- #1

- 114

- 2

## Main Question or Discussion Point

I have a question regarding the solutions to linear-ordinary differential equations. I had originally learned that the solutions to such differential equations consist of a homogenous solution and particular solution. The homogenous response is due to initial conditions while the particular response is due to the forcing function.

However, I've recently heard the terminology of Zero-Input/Zero-State response. More specifically, the summation of these two responses gives the solution to the linear ODE. I assume that the zero-input response is similar to the homogenous response, but I'm not sure about the zero-state response. How exactly is the zero-input/zero-state response response different from the idea of homogenous/particular solutions?

I've attempted to search for an answer to this question, but have had no luck.

Any help?

Thanks,

However, I've recently heard the terminology of Zero-Input/Zero-State response. More specifically, the summation of these two responses gives the solution to the linear ODE. I assume that the zero-input response is similar to the homogenous response, but I'm not sure about the zero-state response. How exactly is the zero-input/zero-state response response different from the idea of homogenous/particular solutions?

I've attempted to search for an answer to this question, but have had no luck.

Any help?

Thanks,