Recent content by electroweak
-
E
Graduate Projective representations of the spin group
Ah, these must be anyons.- electroweak
- Post #3
- Forum: Quantum Physics
-
E
Graduate Projective representations of the spin group
I answered my own question (I think). Modulo redefinition of the phases of operators, projective representations are in correspondence with central extensions (as both are built out of nontrivial algebraic 2-cocycles). For n>2, Spin(n) is a universal cover, so the phase of any of its projective...- electroweak
- Post #2
- Forum: Quantum Physics
-
E
Graduate Projective representations of the spin group
To define spinors in QM, we consider the projective representations of SO(n) that lift to linear representations of the double cover Spin(n). Why don't we consider projective representations of Spin?- electroweak
- Thread
- Group Representations Spin
- Replies: 4
- Forum: Quantum Physics
-
E
Graduate Group Cohomology: Borel's Finite & Lie Group Cases
Note: for discrete G, BG is the Eilenberg-Maclane space K(G,1). Perhaps this will help with the finite case.- electroweak
- Post #2
- Forum: Differential Geometry
-
E
Graduate Group Cohomology: Borel's Finite & Lie Group Cases
In Dijkgraaf and Witten's paper "Topological Gauge Theory and Group Cohomology" it is claimed that... Why are either of these statements (the Lie group case or the finite case) true?- electroweak
- Thread
- Group
- Replies: 2
- Forum: Differential Geometry
-
E
Graduate Is Phi^3 Theory in Five Dimensions Supposed to Be Finite?
OK, I think I am missing something very basic... When regularizing phi^3 theory in six dimensions, Srednicki comes to eq 14.30, which shows that the 1-loop contribution to the propagator diverges (the gamma function has a pole). This is good. OK. Now let d=5 (or epsilon=1). Actually, go...- electroweak
- Thread
- Dimensions Theory
- Replies: 3
- Forum: Quantum Physics
-
E
Graduate Morse-witten cohomology for non-orientable target spaces
Consider the height function on the image of some nice immersion of the Klein Bottle in R3. Pullback the height function by the immersion to obtain a potential on the actual Klein Bottle. Is this a Morse function? If so, I can't get it to work. If not, why isn't it?- electroweak
- Post #3
- Forum: Differential Geometry
-
E
Graduate Morse-witten cohomology for non-orientable target spaces
I'm reading "Mirror Symmetry" by Hori et al. In it, they compute the cohomology groups for the sphere and the torus. I tried to do the same for the Klein bottle, and it isn't working out. Is Morse homology defined for non-orientable spaces? If not, why not? Can it be extended?- electroweak
- Thread
- Replies: 5
- Forum: Differential Geometry
-
E
Graduate Euler characteristic as a total derivative
We all know that the Euler characteristic is a topological invariant. But let's suppose that we don't know this or anything else about algebraic topology for that matter. We are given only the Gauss-Bonnet theorem, which expresses the Euler characteristic in geometrical terms. In his string...- electroweak
- Thread
- Characteristic Derivative Euler Total derivative
- Replies: 2
- Forum: Differential Geometry
-
E
Graduate Precise measurements in Quantum Mechanics
I think that, by "precise", mpkannan means "determinate". If ψ is an eigenstate to begin with, we are guaranteed that its measurement will yield a particular value (the corresponding eigenvalue). Otherwise, we can't predict with certainty the outcome of the measurement. "Precise" probably...- electroweak
- Post #5
- Forum: Quantum Physics
-
E
Graduate Physical observables, locality, and a preferred basis
My apologies about the confusion, everyone. When I said "mixed state", I meant what DrClaude and kith have described: a single ket. I acknowledge that a single ket can be expanded as a superposition of eigenkets. But in doing so, classical probability is not invoked. kith puts my original...- electroweak
- Post #10
- Forum: Quantum Physics
-
E
Graduate Precise measurements in Quantum Mechanics
A quantum state cannot be a simultaneous eigenfunction of position and momentum. Position eigenstates do exist, as do momentum eigenstates. You just can't be an eigenstate of both. You may take an arbitrary state and measure its position, so that it becomes (collapses into) a position...- electroweak
- Post #2
- Forum: Quantum Physics
-
E
Graduate Physical observables, locality, and a preferred basis
I think you're correct that I didn't set up my experiment carefully enough. Perhaps I could have gone with some form of the double slit experiment; maybe there would also be problems here. I haven't given the physical details much thought. For the sake of argument, let's suppose that...- electroweak
- Post #3
- Forum: Quantum Physics
-
E
Graduate Physical observables, locality, and a preferred basis
Quantum mechanics says that physical observables are self-adjoint operators. Is this correspondence a bijection, ie can we realize any such operator as a physical observable? There are obvious practical concerns with physically realizing certain contrived operators. But are there any...- electroweak
- Thread
- Basis Locality observables Physical
- Replies: 12
- Forum: Quantum Physics
-
E
Academic presentation software or template?
Thanks. I ended up going with Beamer. It's exactly what I wanted, and it's simple to use.- electroweak
- Post #4
- Forum: STEM Academic Advising