Recent content by Wledig
- 
	W
I Renormalization of scalar field theory
I was reading about the renormalization of ##\phi^4## theory and it was mentioned that in order to renormalize the 2-point function ##\Gamma^{(2)}(p)## we add the counterterm : \delta \mathcal{L}_1 = -\dfrac{gm^2}{32\pi \epsilon^2}\phi^2 to the Lagrangian, which should give rise to a...- Wledig
 - Thread
 - Field Field theory Qft Quantum field theory Renormalization Scalar Scalar field Theory
 - Replies: 3
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I Understanding the Definition of Isotropic Spaces in Riemannian Manifolds
Sorry, I assumed the concepts and notation were well known. Here's how Hobson puts it: "A maximally symmetric space is specified by just one number - the curvature K, which is independent of the coordinates. Such constant curvature spaces must clearly be homogeneous and isotropic." So it's...- Wledig
 - Post #6
 - Forum: Differential Geometry
 
 - 
	W
I Understanding the Definition of Isotropic Spaces in Riemannian Manifolds
Not sure I see how this leads to the space being isotropic and homogeneous. And why should it be proportional to the curvature?- Wledig
 - Post #3
 - Forum: Differential Geometry
 
 - 
	W
I Understanding the Definition of Isotropic Spaces in Riemannian Manifolds
Why does the constraint: $$R_{ijkl}=K(g_{ik} g_{jl} - g_{il}g_{jk})$$ Imply that the resulting space is maximally symmetric? The GR book I'm using takes this relation more or less as a definition, what is the idea behind here?- Wledig
 - Thread
 - Differential geometry General relativity Symmetric
 - Replies: 9
 - Forum: Differential Geometry
 
 - 
	W
I How Can Neutral Currents Be Detected in Particle Physics Experiments?
I had a vague idea of how things could work out, let me see if it's what you're suggesting. If we bombard an atom with muon antineutrinos we ought to observe electrons being scattered out of it, which would give an indirect confirmation for the existence of the ##Z^0## boson. Is that it? No hope...- Wledig
 - Post #4
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I How Can Neutral Currents Be Detected in Particle Physics Experiments?
In decay processes where no mixing between quark families is present, the mediator of the weak force is the neutral ##Z^0## boson. If that is the case, how is it experimentally possible to detect neutral currents in processes such as: $$\bar{\nu}_\mu + e \rightarrow \bar{\nu}_\mu + e$$ What...- Wledig
 - Thread
 - Currents Detection High energy physics Neutral Particle physics Weak interaction
 - Replies: 8
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I Propagator of a Scalar Field via Path Integrals
I see now. I just had to use the product rule and the fact that: $$\frac{\delta J(y)}{\delta J(x)} = \delta^4(x-y)$$ What really confused me was the ##\frac{Z[J]}{Z_0}## term appearing out of nowhere. But on second look that's just: $$\frac{Z[J]}{Z_0} = \text{exp}[-\frac{1}{2}\int d^4 x \; d^4 y...- Wledig
 - Post #3
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I Propagator of a Scalar Field via Path Integrals
I don't understand a step in the derivation of the propagator of a scalar field as presented in page 291 of Peskin and Schroeder. How do we go from: $$-\frac{\delta}{\delta J(x_1)} \frac{\delta}{\delta J(x_2)} \text{exp}[-\frac{1}{2} \int d^4 x \; d^4 y \; J(x) D_F (x-y) J(y)]|_{J=0}$$ To...- Wledig
 - Thread
 - Field Integrals Path Path integral formulation Path integrals Peskin schroeder Propagator Qft Scalar Scalar field
 - Replies: 3
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I Getting Used to Killing Vector Fields: Explained
Sorry, I'm still confused. If I do something like: $$\frac{d}{dt}(-P_a \xi^a) = \frac{1}{c}\frac{d}{d\tau}(-P_a\xi^a)=-\frac{1}{c}\left(\frac{dP_a}{d\tau}\xi^a + P_a\frac{d\xi^a}{d\tau}\right)$$ It vanishes because the derivative of the killing vector is zero by definition and we are imposing...- Wledig
 - Post #7
 - Forum: Special and General Relativity
 
 - 
	W
I Getting Used to Killing Vector Fields: Explained
Hi, sorry for not providing the reference. I read it on Wald (page 287). Can we be more precise about this statement? If I take the derivative with respect to time of ##E = -P_a \xi^a## it should yield zero, right? But how exactly do I calculate this derivative?- Wledig
 - Post #5
 - Forum: Special and General Relativity
 
 - 
	W
I Getting Used to Killing Vector Fields: Explained
I'm struggling to get the hang of killing vectors. I ran across a statement that said energy in special relativity with respect to a time translation Killing field ##\xi^{a}## is: $$E = -P_a\xi^{a}$$ What exactly does that mean? Can someone clarify to me?- Wledig
 - Thread
 - Fields Killing vector Special relativity Vector Vector fields
 - Replies: 7
 - Forum: Special and General Relativity
 
 - 
	W
I Inner Product Between States of Multiple Particles
Nevermind, you're right. It's the same thing as the expression I wanted, since: $$\delta^3(p_A-p_2)=\delta^3(-(p_2-p_A) )= \frac{\delta^3(p_2-p_A)}{|-1|}=\delta^3(p_2-p_A)$$ Everything is fine.- Wledig
 - Post #6
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I Inner Product Between States of Multiple Particles
I did the same thing that I had done with ##a_2a_{A}^{\dagger}##, but this time for ##a_2 a_{B}^{\dagger}##: $$a_2 a_{B}^{\dagger} = [a_2,a_{B}^{\dagger}] + a_{B}^{\dagger}a_2$$ I did this to ##a_1 a_{B}^{\dagger}## and ##a_1 a_{A}^{\dagger}## too. The result is pretty close to what I wanted...- Wledig
 - Post #5
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I Cross Section Formula in Peskin and Schroeder
Thanks again!- Wledig
 - Post #8
 - Forum: High Energy, Nuclear, Particle Physics
 
 - 
	W
I Cross Section Formula in Peskin and Schroeder
Can I bother you a little more? I got a bit further on the deduction of the formula, but now I'm stuck at: $$ \int \bar{dk_{A}^{z}}\delta(\sqrt{ \bar{k_{A}^{2}}+m_{A}^{2}}+\sqrt{ \bar{k_{B}^{2}}+m_{B}^{2}}-\sum E_f)|_{\bar{k_{B}^{z}}=\sum p_{f}^{z}-\bar{k_{A}^{z}}} $$ $$ =...- Wledig
 - Post #6
 - Forum: High Energy, Nuclear, Particle Physics