I Propagator of a Scalar Field via Path Integrals

Click For Summary
The discussion focuses on understanding a specific step in the derivation of the propagator for a scalar field as outlined in Peskin and Schroeder. The main query revolves around transitioning from a complex expression involving functional derivatives of the source term J to a simplified form that includes integrals of the Feynman propagator D_F. The confusion primarily stems from the appearance of the term Z[J]/Z_0, which is clarified as being equivalent to the exponential of the integral involving J and D_F. The resolution involves applying the product rule for functional derivatives and recognizing that the functional derivative of J with respect to itself yields a delta function. This understanding ultimately clarifies the derivation process and resolves the initial confusion.
Wledig
Messages
69
Reaction score
1
I don't understand a step in the derivation of the propagator of a scalar field as presented in page 291 of Peskin and Schroeder. How do we go from:
$$-\frac{\delta}{\delta J(x_1)} \frac{\delta}{\delta J(x_2)} \text{exp}[-\frac{1}{2} \int d^4 x \; d^4 y \; J(x) D_F (x-y) J(y)]|_{J=0}$$
To:
$$-\frac{\delta}{\delta J(x_1)} [ -\frac{1}{2} \int d^4 y \; D_F (x_2-y)J(y) - \frac{1}{2} \int d^4 x \; J(x) D_F (x-x_2)]\frac{Z[J]}{Z_0} |_{J=0} \; \; \;\text{?}$$
Why is the functional derivative with respect to ##J(x_2)## equal to the term within the brackets above?
 
Physics news on Phys.org
Well, do you know how to evaluate the following derivatives?
$$\frac{\delta (F[J]G[J])}{\delta J(x)}$$
$$\frac{\delta J(y)}{\delta J(x)}$$
Where ##F##, ##G## are functionals and ##J## is a function. Knowing this is almost immediat to obtain Peskin's result.
 
  • Like
Likes Wledig
I see now. I just had to use the product rule and the fact that:
$$\frac{\delta J(y)}{\delta J(x)} = \delta^4(x-y)$$
What really confused me was the ##\frac{Z[J]}{Z_0}## term appearing out of nowhere. But on second look that's just:
$$\frac{Z[J]}{Z_0} = \text{exp}[-\frac{1}{2}\int d^4 x \; d^4 y \; J(x)D_F(x-y) J(y)]$$
Thanks for clearing things out, sorry for the silly question.
 
Exact, very good
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...
Hello everyone, I am trying to calculate the energy loss and straggling of alpha particles with same energy, I used LISE++ to obtain the energy loss in every layer of the materials using Spectrometer Design of LISE++, but I can only calculate the energy-loss straggling layer by layer. Does anyone know the way to obtain the energy-loss straggling caused by every layer? Any help would be appreciated. J.