Wledig
				
				
			 
			
	
	
	
		
	
	
			
		
		
			
			
				- 69
 
- 1
 
On page 105 of Peskin and Schroeder's book it says that the integral over ##d^2b## in the expression:
$$d\sigma = \left(\Pi_f \frac{d^3 p_f}{(2\pi)^3}\frac{1}{2E_f}\right) \int d^2b\left(\Pi_{i=A,B} \int \frac{d^3 k_i}{(2\pi)^3}\frac{\phi_i(k_i)}{\sqrt{2E_i}} \int \frac{d^3 \bar{k_i}}{(2\pi)^3}\frac{\phi_i(\bar{k_i})}{\sqrt{2\bar{E_i}}}\right) \times e^{ib(\bar{k_B}-k_B}(<p_f|k_i>)(<p_f|k_i>)^{*}$$
equals ##(2\pi)^2\delta^{(2)}(k_{B}^{\perp}-k_{B}^{\perp})##. I didn't understand why that is so. Can someone explain it to me?
				
			$$d\sigma = \left(\Pi_f \frac{d^3 p_f}{(2\pi)^3}\frac{1}{2E_f}\right) \int d^2b\left(\Pi_{i=A,B} \int \frac{d^3 k_i}{(2\pi)^3}\frac{\phi_i(k_i)}{\sqrt{2E_i}} \int \frac{d^3 \bar{k_i}}{(2\pi)^3}\frac{\phi_i(\bar{k_i})}{\sqrt{2\bar{E_i}}}\right) \times e^{ib(\bar{k_B}-k_B}(<p_f|k_i>)(<p_f|k_i>)^{*}$$
equals ##(2\pi)^2\delta^{(2)}(k_{B}^{\perp}-k_{B}^{\perp})##. I didn't understand why that is so. Can someone explain it to me?