A Reconciling units for the Einstein and Landau-Lifshitz pseudotensors

Click For Summary
The discussion focuses on the reconciliation of units for the Einstein and Landau-Lifshitz pseudotensors, both of which satisfy conservation equations that imply their respective quantities represent total energy and momentum densities. The main issue raised is the potential difference in units for the quantities involved, which depends on the conventions adopted by each author. It is noted that if the determinant of the metric, g, is considered dimensionless, then the pseudotensors could be consistent in their units. However, discrepancies in conventions, such as the treatment of constants like G and c, could lead to incompatibilities. Ultimately, careful examination of each author's conventions is essential for understanding the compatibility of their formulations.
Kostik
Messages
274
Reaction score
32
TL;DR
Examining a discrepancy in the energy-momentum conservation law expressed using the Einstein(-Dirac) and Landau-Lifshitz pseudotensors
The Einstein (or Einstein-Dirac) pseudotensor ##{t_\mu}^\nu## satisfies
$$\left[ \sqrt{-g}({t_\mu}^\nu + T_\mu^\nu) \right]_{,\nu}=0$$ (see Dirac, "General Theory of Relativity", eq. 31.2)). Similarly, the Landau-Lifshitz pseudotensor ##t^{\mu\nu}## satisfies
$$\left[ (-g)(t^{\mu\nu} + T^{\mu\nu}) \right]_{,\nu}=0$$ (see L-L, "Classical Theory of Fields" 4th Ed., eq. (96.10)).

In both cases, the authors deduce that the conservation equation implies that the quantity in square brackets represents the density of total energy and momentum of the matter-energy fields plus the gravitational field (curvature of space).

But surely the quantities in square brackets have different units. How can they both be energy-momentum density?
 
Physics news on Phys.org
That depends very much on the conventions that one adopts. You need to look carefully into each author's conventions. They may not be the same or even compatible.

One possible convention is that ##g## is dimensionless. Then ##t## and ##T## could have the same units and both author's expressions would be consistent and compatible. However, that may not be the case, in which case the different authors will ascribe different units to the various quantities.
 
Dale said:
That depends very much on the conventions that one adopts. You need to look carefully into each author's conventions. They may not be the same or even compatible.

One possible convention is that ##g## is dimensionless. Then ##t## and ##T## could have the same units and both author's expressions would be consistent and compatible. However, that may not be the case, in which case the different authors will ascribe different units to the various quantities.
I don't think that's the issue. There is no ambiguity in the metric ##ds^2 = g_{\mu\nu} dx^\mu dx^\nu##. There are some differences between Dirac and L-L; for example, Dirac assumes ##G=c=1## while L-L carries these constants throughout. Also, Dirac's Ricci tensor is the opposite of L-L's. But none of these enter into the derivation of their pseudo-tensors.
 
Why don't you start with the familiar case that all
$$x^0,x^1,x^2,x^3$$
have dimension of length. All the metric tensor components, thus its determinant g also, are dimensionless.
Then you may investigate more general case, e.g., cylindrical or polar type coordinates, if you wish.
 
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...