Why does a gyroscope resist rotating towards the ground?

  • Context: Undergrad 
  • Thread starter Thread starter FIphysics
  • Start date Start date
  • Tags Tags
    Gyroscope
Click For Summary
SUMMARY

The discussion centers on the mechanics of gyroscopes, specifically why they resist rotation towards the ground. The bicycle wheel example illustrates that angular momentum is directed in the -x direction while gravitational torque acts in the +z direction. The gyroscope achieves dynamic equilibrium through precession, where the gravitational force's tendency to pitch down is countered by the precessing motion's tendency to pitch up. The analysis of motion in quadrants reveals that the wheel's mass dynamics contribute to this resistance.

PREREQUISITES
  • Understanding of angular momentum and torque
  • Familiarity with gyroscopic motion and precession
  • Basic knowledge of coordinate systems in physics
  • Experience with visualizing rotational dynamics
NEXT STEPS
  • Study the principles of gyroscopic precession in detail
  • Explore the mathematical modeling of gyroscopic motion
  • Learn about the applications of gyroscopes in navigation systems
  • Investigate the effects of friction on gyroscopic stability
USEFUL FOR

Students of physics, engineers working with rotational systems, and anyone interested in the principles of gyroscopic motion and its applications.

FIphysics
Messages
1
Reaction score
0
Today in class we have an intro to gyroscopes where my professor gave the classic "bicycle wheel" example where he spun a bicycle wheel to give it significant angular velocity, attached one end of the wheel apparatus to a string fixed to the ceiling, and let the wheel hang and precess (just like as shown in this video ). I understand how the angular momentum is in the -x direction (typically cartesian 3-d system) and the torque due to the gravitational force is in the +z direction, but I cannot rectify this with why the wheel resists rotated towards the ground. Can anyone help me to understand this?
 
Last edited by a moderator:
Physics news on Phys.org
Watching that video was almost a spiritual experience.

Not sure I follow your coordinate system, but if you paint a red dot on the tire representing an atom, it sure wants to go in a straight line as much as it can. The spokes keep it in a circular motion, but gravity doesn't have much of a say in this until the red dot has lost momentum to friction.
 
FIphysics said:
I cannot rectify this with why the wheel resists rotated towards the ground.

attachment.php?attachmentid=24771&d=1270068885.png


The first image shows a gimbal mounted gyroscope wheel. From outside to inside there is a yellow housing and a red housing. (I will get to the green arrows - and another detail - later.)

I will define three axes:
# Roll axis - the gyroscope wheel spins around the roll axis.

# Pitch axis - motion of the red housing, as you can see, the gimbal mounting ensures the pitch axis is perpendicular to the roll axis.

# Swivel axis - motion of the yellow housing.


First start the gyroscope wheel spinning fast. Then add some swivel.
The second image shows a single quadrant.

attachment.php?attachmentid=27073&d=1279725740.png


Rather than trying to mentally follow the entire wheel as it spins I suggest you divide in four quadrants, and you consider the mechanics of the motion in each quadrant.

I will concentrate on the quadrant of the second image now.

The mass in that quadrant is moving towards the swivel axis. Think of a point particle somewhere along the wheel rim, for example the point where the green arrow starts. That point is circumnavigating the swivel axis, with a corresponding velocity. Moving closer to the swivel axis the point has a tendency to pull ahead of the overall rotation. (Compare what happens when you twirl around an object tied to a string. Pull on the string to make it shorter and the object goes around faster.)

Repeating the first image:

attachment.php?attachmentid=24771&d=1270068885.png


(The brown cilinder represents a weight that tends to pitch the gyroscope wheel.)

In two of the quadrants the wheel mass is moving towards the swivel axis, in the other two away from the swivel axis.

The green arrows represent precession-caused tendency for each quadrant. Combining the four quadrants you see there is a pitching effect.

You can apply that finding to the example of the bicycle wheel demonstration. When the bicycle wheel is precessing there is a state of dynamic equilibrium. Gravity imparts a tendency to pitch down, the precessing motion imparts a tendency to pitch up. Those two tendencies are in dynamic equilibrium.

Full story, including math, is in the http://www.cleonis.nl/physics/phys256/gyroscope_physics.php" article on my website.
 
Last edited by a moderator:
Funny how my fast spinning car tires don't prevent me from flipping over in a bad turn.
OK, that's just humor...
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
903
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
3K
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K