Topology Introduction to Topological Manifolds by John Lee

Click For Summary
"Introduction to Topological Manifolds" by John M. Lee is highly regarded for its clarity and superb explanations, making it an excellent resource for graduate students interested in differential geometry. The book requires a solid understanding of real analysis, particularly epsilon-delta proofs, and familiarity with metric spaces and group theory. While it effectively covers essential topics in topology, such as manifolds, connectedness, compactness, and homotopy, it intentionally omits some analysis-focused material like Tychonoff's theorem and nets and filters. Lee's writing style is influenced by Munkres, yet he presents the material more rapidly, which may appeal to some readers while challenging others. The book serves as a strong foundation for those looking to advance to more complex topics in smooth manifolds.

For those who have used this book


  • Total voters
    5
Messages
19,811
Reaction score
10,782

Table of Contents:
Code:
[LIST]
[*] Preface
[*] Introduction
[LIST]
[*] What Are Manifolds?
[*] Why Study Manifolds?
[/LIST]
[*] Topological Spaces
[LIST]
[*] Topologies
[*] Convergence and Continuity
[*] Hausdorff Spaces
[*] Bases and Countability
[*] Manifolds
[*] Problems
[/LIST]
[*] New Spaces from Old
[LIST]
[*] Subspaces
[*] Product Spaces
[*] Disjoint Union Spaces
[*] Quotient Spaces
[*] Adjunction Spaces
[*] Topological Groups and Group Actions
[*] Problems
[/LIST]
[*] Connectedness and Compactness
[LIST]
[*] Connectedness
[*] Compactness
[*] Local Compactness
[*] Paracompactness
[*] Proper Maps
[*] Problems
[/LIST]
[*] Cell Complexes
[LIST]
[*] Cell Complexes and CW Complexes
[*] Topological Properties of CW Complexes
[*] Classification of 1-Dimensional Manifolds
[*] Simplicial Complexes
[*] Problems
[/LIST]
[*] Compact Surfaces
[LIST]
[*] Surfaces
[*] Connected Sums of Surfaces
[*] Polygonal Presentations of Surfaces
[*] The Classification Theorem
[*] The Euler Characteristic
[*] Orientability
[*] Problems
[/LIST]
[*] Homotopy and the Fundamental Group
[LIST]
[*] Homotopy
[*] The Fundamental Group
[*] Homomorphisms Induced by Continuous Maps
[*] Homotopy Equivalence
[*] Higher Homotopy Groups
[*] Categories and Functors
[*] Problems
[/LIST]
[*] The Circle
[LIST]
[*] Lifting Properties of the Circle
[*] The Fundamental Group of the Circle
[*] Degree Theory for the Circle
[*] Problems
[/LIST]
[*] Some Group Theory
[LIST]
[*] Free Products
[*] Free Groups
[*] Presentations of Groups
[*] Free Abelian Groups
[*] Problems
[/LIST]
[*] The Seifert–Van Kampen Theorem
[LIST]
[*] Statement of the Theorem
[*] Applications
[*] Fundamental Groups of Compact Surfaces
[*] Proof of the Seifert–Van Kampen Theorem
[*] Problems
[/LIST]
[*] Covering Maps
[LIST]
[*] Definitions and Basic Properties
[*] The General Lifting Problem
[*] The Monodromy Action
[*] Covering Homomorphisms
[*] The Universal Covering Space
[*] Problems
[/LIST]
[*] Group Actions and Covering Maps
[LIST]
[*] The Automorphism Group of a Covering
[*] Quotients by Group Actions
[*] The Classification Theorem
[*] Proper Group Actions
[*] Problems
[/LIST]
[*] Homology
[LIST]
[*] Singular Homology Groups
[*] Homotopy Invariance
[*] Homology and the Fundamental Group
[*] The Mayer–Vietoris Theorem
[*] Homology of Spheres
[*] Homology of CW Complexes
[*] Cohomology
[*] Problems
[/LIST]
[*] Appendix: Review of Set Theory
[LIST]
[*] Basic Concepts
[*] Cartesian Products, Relations, and Function
[*] Number Systems and Cardinality
[*] Indexed Families
[/LIST]
[*] Appendix: Review of Metric Spaces
[LIST]
[*] Euclidean Spaces
[*] Metrics
[*] Continuity and Convergence
[/LIST]
[*] Appendix: Review of Group Theory
[LIST]
[*] Basic Definitions
[*] Cosets and Quotient Groups
[*] Cyclic Groups
[/LIST]
[*] Notation Index
[*] Subject Index
[*] References
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
Absolutely one of the best topology books out there. Lee is a real master at writing books. He makes everything very clear and his explanations are superb. This book is the perfect book for those who want to go into differential geometry. The results are really focused towards geometry, which means that some material that is important for analysis is left out. For example, Tychonoff's theorem is not covered and neither are nets and filters.
Interested reader absolutely must be comfortable with epsilon-delta proofs and continuity. Some knowledge of metric spaces would be nice as well, although Lee provides an appendix that has everything you need to know. For the later chapters, you will need group theory.
 
I used this book as a supplement for a point-set topology course that used Munkres. Lee is obviously influenced by Munkres (which he admits in the Intro) so parts are very similar. Although Munkres is a very well-written book, I often liked Lee's explanations more, however he moves through the material at a greater speed (this can be good or bad, depending on your view). He is also focussed on preparing the reader for his Smooth Manifolds book, so he skips a lot of the more fiddly point-set material that Munkres goes into.
 
Many years ago, as the internet was coming of age, I burned over 500 pounds of technical manuals. I realized I can look things up on the internet faster than I can find something in a technical manual. And just about anything I might need could be found online. But letting go of my several shelves worth of college text and other science books is another matter. I can't bring myself to get rid of them but there is very little if anything I can't find online now. Books are heavy and a pain...

Similar threads

  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
6K
  • Poll Poll
  • · Replies 10 ·
Replies
10
Views
8K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
5K
  • Poll Poll
  • · Replies 3 ·
Replies
3
Views
3K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
4K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
4K
  • Poll Poll
  • · Replies 3 ·
Replies
3
Views
8K
  • Poll Poll
  • · Replies 15 ·
Replies
15
Views
20K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
5K
  • Poll Poll
  • · Replies 4 ·
Replies
4
Views
5K