Geometry What Makes Riemannian Geometry by Do Carmo Essential for Grad Students?

AI Thread Summary
Manfredo Do Carmo's "Riemannian Geometry" is a graduate-level textbook that requires a background in basic differential geometry, topology, calculus 3, and linear algebra. The book is structured to provide a comprehensive introduction to differentiable manifolds, Riemannian metrics, affine connections, geodesics, curvature, Jacobi fields, isometric immersions, and various theorems related to complete manifolds and spaces of constant curvature. While it is noted for its motivational approach and coverage of topics, it is less rigorous than other texts, such as Lee's, and lacks many diagrams. The problems presented in the book serve as mini-lessons, though caution is advised against looking at hints, as they often reveal solutions. The text is particularly suitable for those familiar with Do Carmo's earlier work, "Differential Geometry of Curves and Surfaces," and is appreciated for its leisurely tone, making complex concepts more accessible.

For those who have used this book

  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    2
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Preface
[*] How to use this book
[*] Differentiable Manifolds
[LIST]
[*] Introduction
[*] Differentiable manifolds; tangent space
[*] Immersions and embeddings; examples
[*] Other examples of manifolds. Orientation
[*] Vector fields; brackets. Topology of manifolds
[/LIST]
[*] Riemannian Metrics
[LIST]
[*] Introduction
[*] Riemannian Metrics
[/LIST]
[*] Affine Connections; Riemannian Connections
[LIST]
[*] Introduction
[*] Affine connections
[*] Riemannian connections
[/LIST]
[*] Geodesics; Convex Neighborhoods
[LIST]
[*] Introduction
[*] The geodesic flow
[*] Minimizing properties of geodesics
[*] Convex neighborhoods
[/LIST]
[*] Curvature
[LIST]
[*] Introduction
[*] Curvature
[*] Sectional curvature
[*] Ricci curvature and scalar curvature
[*] Tensors on Riemannian manifolds
[/LIST]
[*] Jacobi Fields
[LIST]
[*] Introduction
[*] The Jacobi equation
[*] Conjugate points
[/LIST]
[*] Isometric Immersions
[LIST]
[*] Introduction
[*] The second fundamental form
[*] The fundamental equations
[/LIST]
[*] Complete Manifolds; Hopf-Rinow and Hadamard Theorems
[LIST]
[*] Introduction
[*] Complete manifolds; Hopf-Rinow Theorem
[*] The Theorem of Hadamard
[/LIST]
[*] Spaces of Constant Curvature
[LIST]
[*] Introduction
[*] Theorem of Cartan on the determination of the metric by means of the curvature
[*] Hyperbolic space
[*] Space forms
[*] Isometries of the hyperbolic space; Theorem of Liouville
[/LIST]
[*] Variations of Energy
[LIST]
[*] Introduction
[*] Formulas for the first and variations of energy
[*] The theorems of Bonnet-Myers and of Synge-Weinstein
[/LIST]
[*] The Rauch comparison theorem
[LIST]
[*] Introduction
[*] The theorem of Rauch
[*] Applications of the Index Lemma to immersions
[*] Focal points and an extension of Rauch's Theorem
[/LIST]
[*] The Morse Index Theorem
[LIST]
[*] Introduction
[*] The Index Theorem
[/LIST]
[*] The Fundamental Group of Manifolds of Negative Curvature
[LIST]
[*] Introduction
[*] Existence of closed geodesics
[/LIST]
[*] The Sphere Theorem
[LIST]
[*] Introduction
[*] The cut locus
[*] The estimate of the injectivity radius
[*] The Sphere Theorem
[*] Some further developments
[/LIST]
[*] References
[*] Index
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
This book is not as rigorous as Lee's book on the same subject and doesn't have many diagrams but it has a very nice motivation for each chapter, covers more topics, and has problems that are pretty much mini lessons in and of themselves (but beware don't look at the hints whatever you do because they are basically the solutions xD). If you are already well acquainted with a lot of smooth manifold theory then just use Lee's book on the same subject and maybe use this book for the problems. It has a noticeably leisurely tone.
 
This is an excellent book on Riemannian Geometry. It is very similar to Lee's masterpiece, but most leisurely. If you went through the previous book by Do Carmo: "Differential Geometry of Curves and Surfaces", then you should have no problem with this book. I do wish that Do Carmo used the language of differential forms more.
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...

Similar threads

Replies
1
Views
4K
  • Poll Poll
Replies
1
Views
4K
Replies
15
Views
20K
Replies
3
Views
2K
  • Poll Poll
Replies
10
Views
8K
  • Poll Poll
Replies
1
Views
4K
  • Poll Poll
Replies
4
Views
6K
Replies
4
Views
5K
  • Poll Poll
Replies
3
Views
6K
Back
Top