Fundamental of Differential Geometry by Lang

In summary, "Fundamentals of Differential Geometry" is a comprehensive and expanded version of Lang's earlier work "Foundations of Differential Manifolds". It covers a wide range of topics including differential calculus, manifolds, vector bundles, vector fields and differential equations, operations on vector fields and differential forms, metrics and Riemannian geometry, curvature, immersions and submersions, volume forms and integration, and applications of Stokes' Theorem. Some may be skeptical of the piecemeal approach used in this book, but it remains a valuable resource for those looking to learn the subject.

For those who have used this book

  • Strongly Recommend

    Votes: 0 0.0%
  • Lightly Recommend

    Votes: 0 0.0%
  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    0
  • #1
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
22,183
3,321

Table of Contents:
Code:
[LIST]
[*] Foreword
[*] Acknowledgments
[*] General Differential Theory
[LIST]
[*] Differential Calculus
[LIST]
[*] Categories
[*] Topological Vector Spaces
[*] Derivatives and Composition of Maps
[*] Integration and Taylor's Formula
[*] The Inverse Mapping Theorem
[/LIST]
[*] Manifolds
[LIST]
[*] Atlases, Charts, Morphisms
[*] Submanifolds, Immersions, Submersions
[*] Partitions of Unity
[*] Manifolds with Boundary
[/LIST]
[*] Vector Bundles
[LIST]
[*] Definition, Pull Backs
[*] The Tangent Bundle
[*] Exact Sequences of Bundles
[*] Operations on Vector Bundles
[*] Splitting of Vector Bundles
[/LIST]
[*] Vector Fields and Differential Equations
[LIST]
[*] Existence Theorem for Differential Equations
[*] Vector Fields, Curves, and Flows
[*] Sprays
[*] The Flow of a Spray and the Exponential Map
[*] Existence of Tubular Neighborhoods
[*] Uniqueness of Tubular Neighborhoods
[/LIST]
[*] Operations on Vector Fields and Differential Forms
[LIST]
[*] Vector Fields, Differential Operators, Brackets
[*] Lie Derivative
[*] Exterior Derivative
[*] The Poincare Lemma
[*] Contractions and Lie Derivative
[*] Vector Fields and 1-Forms Under Self Duality
[*] The Canonical 2-Form
[*] Darboux's Theorem
[/LIST]
[*] The Theorem of Frobenius
[LIST]
[*] Statement of the Theorem
[*] Differential Equations Depending on a Parameter
[*] Proof of the Theorem
[*] The Global Formulation
[*] Lie Groups and Subgroups
[/LIST]
[/LIST]
[*] Metrics, Covariant Derivatives, and Riemannian Geometry
[LIST]
[*] Metrics
[LIST]
[*] Definition and Functoriality
[*] The Hilbert Group
[*] Reduction to the Hilbert Group
[*] Hilbertian Tubular Neighborhoods
[*] The Morse-Palais Lemma
[*] The Riemannian Distance
[*] The Canonical Spray
[/LIST]
[*] Covariant Derivatives and Geodesies
[LIST]
[*] Basic Properties
[*] Sprays and Covariant Derivatives
[*] Derivative Along a Curve and Parallelism
[*] The Metric Derivative
[*] More Local Results on the Exponential Map
[*] Riemannian Geodesic Length and Completeness
[/LIST]
[*] Curvature
[LIST]
[*] The Riemann Tensor
[*] Jacobi Lifts
[*] Application of Jacobi Lifts to Texp_x
[*] Convexity Theorems
[*] Taylor Expansions
[/LIST]
[*] Jacobi Lifts and Tensorial Splitting of the Double Tangent Bundle
[LIST]
[*] Convexity of Jacobi Lifts
[*] Global Tubular Neighborhood of a Totally Geodesic Submanifold
[*] More Convexity and Comparison Results
[*] Splitting of the Double Tangent Bundle
[*] Tensorial Derivative of a Curve in TX and of the Exponential Map
[*] The Flow and the Tensorial Derivative
[/LIST]
[*] Curvature and the Variation Formula
[LIST]
[*] The Index Form, Variations, and the Second Variation Formula
[*] Growth of a Jacobi Lift
[*] The Semi Parallelogram Law and Negative Curvature
[*] Totally Geodesic Submanifolds
[*] Rauch Comparison Theorem
[/LIST]
[*] An Example of Seminegative Curvature
[LIST]
[*] Pos_n(R) as a Riemannian Manifold
[*] The Metric Increasing Property of the Exponential Map
[*] Totally Geodesic and Symmetric Submanifolds
[/LIST]
[*] Automorphisms and Symmetries
[LIST]
[*] The Tensorial Second Derivative
[*] Alternative Definitions of Killing Fields
[*] Metric Killing Fields
[*] Lie Algebra Properties of Killing Fields
[*] Symmetric Spaces
[*] Parallelism and the Riemann Tensor
[/LIST]
[*] Immersions and Submersions
[LIST]
[*] The Covariant Derivative on a Submanifold
[*] The Hessian and Laplacian on a Submanifold
[*] The Covariant Derivative on a Riemannian Submersion
[*] The Hessian and Laplacian on a Riemannian Submersion
[*] The Riemann Tensor on Submanifolds
[*] The Riemann Tensor on a Riemannian Submersion
[/LIST]
[/LIST]
[*] Volume Forms and Integration
[LIST]
[*] Volume Forms
[LIST]
[*] Volume Forms and the Divergence
[*] Covariant Derivatives
[*] The Jacobian Determinant of the Exponential Map
[*] The Hodge Star on Forms
[*] Hodge Decomposition of Differential Forms
[*] Volume Forms in a Submersion
[*] Volume Forms on Lie Groups and Homogeneous Spaces
[*] Homogeneously Fibered Submersions
[/LIST]
[*] Integration of Differential Forms
[LIST]
[*] Sets of Measure 0
[*] Change of Variables Formula
[*] Orientation
[*] The Measure Associated with a Differential Form
[*] Homogeneous Spaces
[/LIST]
[*] Stokes' Theorem
[LIST]
[*] Stokes' Theorem for a Rectangular Simplex
[*] Stokes' Theorem on a Manifold
[*] Stokes' Theorem with Singularities
[/LIST]
[*] Applications of Stokes' Theorem
[LIST]
[*] The Maximal de Rham Cohomology
[*] Moser's Theorem
[*] The Divergence Theorem
[*] The Adjoint of d for Higher Degree Forms
[*] Cauchy's Theorem
[*] The Residue Theorem
[/LIST]
[/LIST]
[*] Appendix: The Spectral Theorem
[LIST]
[*] Hilbert Space
[*] Functionals and Operators
[*] Hermitian Operators
[/LIST]
[*] Bibliography
[*] Index
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
lang of course was a phenomenally productive writer in the 60's who is now dead. this book is apparently a great expansion of the 100 page or so book i bought as a grad student in about 1965, "foundations of differential manifolds". that book was too abstract and almost useless. but this version is 3 or 4 times as long and has got there by being augmented apparently by various chapters of his other books as well as extra chapters?

this way of writing books piecemeal does not always work so well, and i cannot say how well this one works. i am skeptical though. we need an opinion from someone who has actually used this version to learn the subject. anyone?
 

1. What is the purpose of studying "Fundamentals of Differential Geometry" by Lang?

The purpose of studying "Fundamentals of Differential Geometry" by Lang is to gain a thorough understanding of the basic principles and concepts of differential geometry, which is a branch of mathematics that deals with the study of curves and surfaces in higher-dimensional spaces. This knowledge is essential for further study in fields such as physics, engineering, and computer graphics.

2. Is prior knowledge of calculus necessary for understanding this book?

Yes, prior knowledge of calculus is necessary for understanding "Fundamentals of Differential Geometry" by Lang. This book assumes familiarity with the concepts of calculus, including derivatives, integrals, and multivariable calculus.

3. What topics are covered in this book?

This book covers topics such as curves and surfaces in Euclidean space, differential forms, vector fields, the curvature of curves and surfaces, and the fundamental theorems of differential geometry. It also includes applications to physics and engineering.

4. What level of mathematics is required to understand this book?

This book is aimed at upper-level undergraduate and graduate students in mathematics, physics, engineering, and other related fields. It assumes a solid foundation in calculus and linear algebra, as well as some familiarity with abstract algebra and topology.

5. Does this book include exercises and solutions?

Yes, this book includes numerous exercises throughout each chapter, as well as solutions to selected exercises at the end of the book. These exercises are designed to reinforce the concepts and techniques discussed in the text and to provide further practice for the reader.

Similar threads

  • Poll
  • Science and Math Textbooks
Replies
10
Views
7K
  • Poll
  • Science and Math Textbooks
Replies
1
Views
3K
  • Poll
  • Science and Math Textbooks
Replies
15
Views
19K
  • Poll
  • Science and Math Textbooks
Replies
4
Views
5K
  • Poll
  • Science and Math Textbooks
Replies
2
Views
5K
  • Poll
  • Science and Math Textbooks
Replies
1
Views
3K
  • Poll
  • Science and Math Textbooks
Replies
1
Views
5K
  • Poll
  • Science and Math Textbooks
Replies
2
Views
6K
  • Differential Geometry
Replies
9
Views
2K
  • Science and Math Textbooks
Replies
9
Views
4K
Back
Top