Killing fields as eigenvectors of Ricci tensor

Click For Summary
The discussion revolves around proving that if a Killing vector field ##\xi^a## is an eigenvector of the Ricci tensor, then the twist ##\omega_a## derived from it satisfies ##\nabla_a \omega^{abc} = 0##. The participants explore the implications of ##\nabla_{[a}\omega_{b]} = 0##, concluding that for a non-null Killing vector, this leads to the result that ##R^{a}{}{}_{b}\xi^b = \lambda \xi^{a}##. However, they encounter complications when considering null Killing vector fields, leading to the conclusion that if ##\nabla_{[a}\omega_{b]} = 0##, then ##\omega_a## must equal zero. The conversation emphasizes the need for clarification in the problem statement regarding the nature of the Killing field.
WannabeNewton
Science Advisor
Gold Member
Messages
5,848
Reaction score
552
Hi guys! I need help on a problem from one of my GR texts. Suppose that ##\xi^a## is a killing vector field and consider its twist ##\omega_a = \epsilon_{abcd}\xi^b \nabla^c \xi^d##. I must show that ##\omega_a = \nabla_a \omega## for some scalar field ##\omega##, which is equivalent to showing ##(d\omega)_{ab} = \nabla_{[a}\omega_{b]} = 0##, if and only if ##\xi^a## is an eigenvector of the Ricci tensor i.e. ##R^{a}{}{}_{b}\xi^b = \lambda \xi^{a}## for some scalar field ##\lambda##.

First note that ##\nabla_{[a}\omega_{b]} = 0## if and only if ##\nabla_{a}\omega^{abc} = 0## where ##\omega^{abc} = \epsilon^{abcd}\omega_{d}## is the dual of the twist; inserting the expression for ##\omega_a## we find ##\omega^{abc} = -6\xi^{[a}\nabla^{b}\xi^{c]}## (see the formulas for ##\epsilon_{abcd}## in section B.2 of Wald, particularly page 433). This is easy to see as ##\nabla_{[a}\omega_{b]} = 0 \Rightarrow \epsilon^{efgh}\epsilon_{abgh}\nabla_{e}\omega_{f} = 0 \Rightarrow \epsilon_{abcd}\nabla_{e}(\xi^{[e}\nabla^{c}\xi^{d]}) = 0 \Rightarrow \nabla_{e}(\xi^{[e}\nabla^{a}\xi^{b]}) = \nabla_{e}\omega^{ebc} = 0##
because ##\nabla^{[a}\xi^{b]} = \nabla^a \xi^b## on account of ##\xi^a## being a killing vector field. For the converse, ##\epsilon^{abcd}\nabla_{c}\omega_{d} = \epsilon^{dcba}\epsilon_{defg}\nabla_{c}(\xi^{e}\nabla^{f}\xi^{g}) = -6\nabla_{c}(\xi^{[c}\nabla^{b}\xi^{a]}) = \nabla_{c}\omega^{cba} = 0## thus ##\nabla_{[a}\omega_{b]} = 0##.

Now on to the problem itself, if ##R^{a}{}{}_{b}\xi^b = \lambda \xi^{a}## then
##\nabla_a \omega^{abc} = -6\nabla_{a}(\xi^{[a}\nabla^{b}\xi^{c]} ) = -2(\xi^b \nabla_a \nabla^c \xi^a -\xi^c \nabla_a \nabla^b \xi^a + R^{cb}{}{}_{ad}\xi^{a}\xi^{d})\\ = -2(R^{c}{}{}_{d}\xi^{d}\xi^{b} - R^{b}{}{}_{d}\xi^{d}\xi^{c}) = -2(\lambda\xi^{c}\xi^{b} - \lambda \xi^{b}\xi^{c}) = 0.##

It's the converse I'm stuck on mainly. If ##\nabla_{[a}\omega_{b]} = 0## then, using the above, ##R^{c}{}{}_{d}\xi^{d}\xi^{b} = R^{b}{}{}_{d}\xi^{d}\xi^{c}##. If ##\xi^a## is non-null (##\xi^a \xi_a \neq 0##), then ##R^{c}{}{}_{d}\xi^{d} = \frac{R_{bd}\xi^b\xi^{d}}{\xi^b \xi_b}\xi^{c} = \lambda \xi^c ## as desired. However I don't get what to do when ##\xi^a## is null; I don't see how to show the desired result.
 
Physics news on Phys.org
Ok if ##\xi^a## is a null killing vector field, then ##R_{ab}\xi^a \xi^b = 2\omega^2## where ##\omega^2## is the norm of the twist ##\omega_a##. If ##\xi^a## is an eigenvector of ##R_{ab}## then ##\omega^2 = 0## and since this is the twist, this implies ##\omega_a = 0##.

So for a null killing vector field ##\xi^a##, either (1) ##\nabla_{[a}\omega_{b]} = 0## implies ##\omega_a = 0##, in which case ##\xi^a = \alpha\nabla^a \beta## hence ##\nabla^{a}\xi^{b} = \nabla^{[a}\xi^{b]} = \nabla^{[a}\alpha \nabla^{b]}\beta## thus ##R^{a}{}{}_b \xi^b = \nabla_b \nabla^a \xi^b = \nabla_b (\nabla^{[a}\alpha \nabla^{b]}\beta) = 0##,
or (2) there exists a space-time with some null killing field ##\xi^a## such that ##\omega_a \neq 0## but ##\nabla_{[a}\omega_{b]} = 0## for ##\xi^a##, which would mean that the problem statement is incorrect as given and should specify that the killing field is non-null. Does anyone know if (1) is true or have an example of (2)?
 
Last edited:
If anyone is interested, it just so happens that for any null killing field ##\xi^a##, ##\nabla_{[a}\omega_{b]} = 0## implies ##\omega_a = 0##. As noted in post #2, this then implies that ##\xi^a## is an eigenvector of ##R_{ab}##.

To see this, first note that since ##\xi^a \xi_a = 0## we have ##\xi^a \nabla_b \xi_a = 0 = -\xi^a \nabla_a \xi_b##. Also, from the calculations in post #1 we have that ##\nabla_{[a}\omega_{b]} = 0\Rightarrow \xi^b \nabla_a \nabla^c \xi^a = \xi^c \nabla_a \nabla^b \xi^a ## hence ##\xi^b (\xi_c \nabla_a \nabla^c \xi^a) = 0## but ##\xi^a## is an arbitrary null killing field so it must be that ##\xi_c \nabla_a \nabla^c \xi^a = 0## thus ##\nabla_a \xi_b \nabla^a \xi^b = 0##.

Now let ##\nu ^a## be an arbitrary vector field and consider ##(\omega _a \nu ^a)^2\\ = (\epsilon_{abcd}\nu^a \xi^b \nabla^c \xi^d)(\epsilon^{efgh}\nu_e \xi_f \nabla_g \xi_h)\\ = -4!(\nu^a \xi^b \nabla^c \xi^d )(\nu_{[a}\xi_{b}\nabla_{c}\xi_{d]})##
Using ##\xi^a \xi_a = \xi^a \nabla_b \xi_a = \xi^a \nabla_a \xi_b = \nabla_a \xi_b \nabla^a \xi^b = 0##, it is easy to see that ##(\omega _a \nu ^a)^2 = 0## hence ##\omega_a = 0##.
 
Is there a way to do it more directly, without having to introduce an additional arbitrary vector field?
 
Uh well the argument would be extremely similar. First note that ##\omega_a## is null, ##\omega^a \omega_a = \epsilon^{abcd}\epsilon_{aefg}(\xi_b \nabla_c \xi_d )(\xi^e \nabla^f \xi^g)\\ = -6(\xi_b \nabla_c \xi_d )(\xi^{[b} \nabla^c \xi^{d]} )\\ = -2\{(\xi_b \xi^b) \nabla_c \xi_d \nabla^c \xi^d - (\xi_b \nabla^b \xi^d )\xi^c \nabla_c \xi_d + (\xi_b \nabla^b \xi^c )\xi^d \nabla_c \xi_d\} = 0##

Also note that ##\xi^a \omega_a = \epsilon_{[ab]cd}\xi^{(a}\xi^{b)}\nabla^c \xi^d = 0 ##. Hence ##\omega^a = \alpha \xi^a##, where ##\alpha## is a scalar field, because two orthogonal null vector fields must be parallel. Now ##\nabla_b \omega_{c} = \xi_c \nabla_b \alpha + \alpha \nabla_b \xi_c ## therefore ##\xi_{[a}\nabla_b \omega_{c]} = \xi_{[a}\xi_c \nabla_{b]} \alpha + \alpha \xi_{[a}\nabla_b \xi_{c]} ##. But ##\xi_{[a}\xi_{c]} = 0## so we are left with ##\xi_{[a}\nabla_b \omega_{c]} = \alpha \xi_{[a}\nabla_b \xi_{c]} ##.

Thus if ##\nabla_{[a}\omega_{b]} = 0## then ##\alpha \xi_{[a}\nabla_b \xi_{c]} = 0## which implies ##\alpha = 0##, directly yielding ##\omega^a = 0##, or ##\xi_{[a}\nabla_b \xi_{c]} = 0## implying ##\epsilon_{eabc}\omega^{e} \propto\xi_{[a}\nabla_b \xi_{c]} = 0## hence ##\omega^{d}\propto \epsilon^{dabc}\epsilon_{eabc}\omega^{e} = 0##.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
790
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K