Abel’s Lemma,
Let a_0,a_1,a_2,\cdots and b_0,b_1,b_2,\cdots be elements of a field;
let s_k = a_0 + a_1 + a_2 + \cdots + a_k k= 0,1,2,… And s-1 =0.
Then for any positive real integer n and for m= 0,1,2,…,n-1,
\sum^n _{k=m} a_k b_k = \sum ^{n-1}_{k=m} (b_k - b_{k+1}) s_k + b_n...