- #1
- 155
- 0
Ok, so it's very easy to show P v P = P (where = is logically equivalent) using a truth table as well as using a conditional proof.
P v P Premise
~p Assumption
p Disjunctive Syllogism (1, 2)
p & ~p Conjunction (3, 4)
~p --> (p & ~p) Conditional Proof (2--4)
p v ~p EMI
~p v p Commutation (6)
~p v ~~p Double Negation (7)
~(p & ~p) De Morgan's (8)
~~p Modus Tollens (5, 9)
p Double Negation
My question is, how do I show p v p = p WITHOUT using a truth table OR a conditional prove? I can only use the basic rules of inference (Excluded Middle Introduction, Disjunctive Syllogism, Addition, Conjunction, Simplification) as well as the rules of replacement (De Morgan's, Distribution, etc.)
P v P Premise
~p Assumption
p Disjunctive Syllogism (1, 2)
p & ~p Conjunction (3, 4)
~p --> (p & ~p) Conditional Proof (2--4)
p v ~p EMI
~p v p Commutation (6)
~p v ~~p Double Negation (7)
~(p & ~p) De Morgan's (8)
~~p Modus Tollens (5, 9)
p Double Negation
My question is, how do I show p v p = p WITHOUT using a truth table OR a conditional prove? I can only use the basic rules of inference (Excluded Middle Introduction, Disjunctive Syllogism, Addition, Conjunction, Simplification) as well as the rules of replacement (De Morgan's, Distribution, etc.)