072 is Q(theta) a linear transformation from R^2 to itself.

In summary: Better is to understand what "linear transformation" means! ANY transformation that can be written as a matrix multiplication is linear! A transformation, L, on a vector space is "linear" if and only ifL(u+ v)= Lu+ Lv, for any vectors u and v, andL(au)= aLu, for any vector u and scalar, a.Here if $u= \begin{pmatrix}x \\ y \end{pmatrix}$ and $v= \begin{pmatrix} a \\ b\end{pmatrix}$, $L(u+ v)= \begin{pm
  • #1
karush
Gold Member
MHB
3,269
5
if $Q(\theta)$ is

$\left[\begin{array}{rr}
\cos{\theta}&- \sin{\theta}\\
\sin{\theta}&\cos{\theta}
\end{array}\right]$

how is $Q(\theta)$ is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps

Screenshot 2021-03-13 1.27.12 PM.png
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Ok thanks
I usually don't get much replies on these linear algebra posts
 
  • #3
karush said:
Ok thanks
I usually don't get much replies on these linear algebra posts

I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.
 
  • #4
Better is to understand what "linear transformation" means! ANY transformation that can be written as a matrix multiplication is linear!

A transformation, L, on a vector space is "linear" if and only if
L(u+ v)= Lu+ Lv, for any vectors u and v, and
L(au)= aLu, for any vector u and scalar, a.

Here if $u= \begin{pmatrix}x \\ y \end{pmatrix}$ and $v= \begin{pmatrix} a \\ b\end{pmatrix}$, $L(u+ v)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x+ a \\ y+ b\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

While $Lu+ Lv= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x \\ y \end{pmatrix}+ \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix}= \begin{pmatrix} xcos(\theta)- ysin(\theta) \\ xsin(\theta)+ y cos(\theta)\end{pmatrix}+ \begin{pmatrix} acos(\theta)- bsin(\theta) \\ asin(\theta)+ bcos(\theta)\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

And $L(au)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatri
https://mathhelpboards.com/forums/-/create-thread
072 is Q(theta) is a linear transformation from R^2 to itself.
  • Thread starterkarush
  • Start datehttps://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/#post-124753https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/watch
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
  • Thread starter
  • New
  • https://mathhelpboards.com/posts/124753/bookmark
  • https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
https://mathhelpboards.com/data/avatars/s/0/55.jpg?1588030209
karush
Well-known member

Jan 31, 2012 2,838
if Q(θ)Q(θ) is

[cosθsinθ−sinθcosθ][cos⁡θ−sin⁡θsin⁡θcos⁡θ]

how is Q(θ)Q(θ) is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps
screenshot-2021-03-13-1-27-12-pm-png.gif


Last edited by a moderator: Today at 12:07 AM
https://mathhelpboards.com/posts/124753/react?reaction_id=1 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753
https://mathhelpboards.com/posts/124753/report

x}ax \\ ay \end{pmatrix}= \begin{pmatrix}ax coz
 
  • #5
skeeter said:
I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.

wow... my senior year was 1970 but my highest level in math was algebra II which today is much more advanced
2021_03_07_16.48.50.jpg
 

Similar threads

Replies
1
Views
1K
Replies
24
Views
3K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
7
Views
1K
Replies
6
Views
3K
Replies
4
Views
2K
Back
Top