17.1 Determine if T is a linear transformation

  • MHB
  • Thread starter karush
  • Start date
  • #1
karush
Gold Member
MHB
3,267
4
nmh{2000}
17.1 Let $T: \Bbb{R}^2 \to \Bbb{R}^2$ be defined by
$$T \begin{bmatrix}
x\\y
\end{bmatrix}
=
\begin{bmatrix}
2x+y\\x-4y
\end{bmatrix}$$
Determine if $T$ is a linear transformation. So if
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$
Let $\vec{x}$ and $\vec{y}$ be vectors in $\Bbb{R}^2$ then we can write them as
$$\vec{x}
=\begin{bmatrix}
x_1\\x_2
\end{bmatrix}
, \vec{y}
=\begin{bmatrix}
y_1\\y_2
\end{bmatrix}$$
By definition, we have that
$$T(\vec{x}+\vec{y})
=\begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}$$

OK just seeing if this is developing as it should
hopefully the next few steps will be an addition property
and this is a linear transformation
 
Last edited:

Answers and Replies

  • #2
topsquark
Science Advisor
Insights Author
Gold Member
MHB
1,844
811
17.1 Let $T: \Bbb{R}^2 \to \Bbb{R}^2$ be defined by
$$T \begin{bmatrix}
x\\y
\end{bmatrix}
=
\begin{bmatrix}
2x+y\\x-4y
\end{bmatrix}$$
Determine if $T$ is a linear transformation. So if
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$
Let $\vec{x}$ and $\vec{y}$ be vectors in $\Bbb{R}^2$ then we can write them as
$$\vec{x}
=\begin{bmatrix}
x_1\\x_2
\end{bmatrix}
, \vec{y}
=\begin{bmatrix}
y_1\\y_2
\end{bmatrix}$$
By definition, we have that
$$T(\vec{x}+\vec{y})
= \begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}$$

OK just seeing if this is developing as it should
hopefully the next few steps will be an addition property
and this is a linear transformation
Typo alert!
\(\displaystyle T(\vec{x}+\vec{y})
= T \begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}\)

Good so far. Now what is T(x) + T(y)? And how do you verify T(cx) = cT(x)?

-Dan
 
  • #3
karush
Gold Member
MHB
3,267
4
ok sorry I got to finish this later
but where is the typo...


actually I would say that could be determined just by observation... or not?
 
  • #4
topsquark
Science Advisor
Insights Author
Gold Member
MHB
1,844
811
ok sorry I got to finish this later
but where is the typo...


actually I would say that could be determined just by observation... or not?
It's a little bit of nothing. You left the T off in front of the \(\displaystyle \left [ \begin{matrix} x_1 + y_1 \\ x_2 + y_2 \end{matrix} \right ]\) in the second step of the last equation. (I know there's a way to change the color in LaTeX to highlite it but I'm too lazy to look it up right now.)

-Dan
 
  • #5
karush
Gold Member
MHB
3,267
4
$\displaystyle T(\vec{x}+\vec{y})
= T \begin{bmatrix} x_1+y_1 \\ x_2+y_2 \end{bmatrix}
=T\begin{bmatrix} 2(x_1+y_1)+x_2+y_2\\ x_1+y_1-4(x_2+y_2) \end{bmatrix}$
So then
$T(\vec{x})+T(\vec{y})
= T\begin{bmatrix} x_1\\x_2 \end{bmatrix}
+T\begin{bmatrix} y_1\\y_2 \end{bmatrix}
=\begin{bmatrix} 2(x_1+x_2)\\x_1+x_2\end{bmatrix}+\begin{bmatrix} y_1+y_2\\-4(y_1+y_2 )\end{bmatrix}
=\begin{bmatrix} 2(x_1+y_1)+x_2+y_2\\ x_1+y_1-4(x_2+y_2) \end{bmatrix}$
and
$T(c\vec{x})=\begin{bmatrix}c x_1\\cx_2 \end{bmatrix}
= \begin{bmatrix} cx_1+cy_1 \\ cx_2+cy_2 \end{bmatrix}$
and
$cT(\vec{x})=c\begin{bmatrix} x_1\\x_2 \end{bmatrix}
= c\begin{bmatrix} x_1+y_1 \\ x_2+y_2 \end{bmatrix}
= \begin{bmatrix} cx_1+cy_1 \\ cx_2+cy_2 \end{bmatrix}$


ok typos for sure
 
  • #6
topsquark
Science Advisor
Insights Author
Gold Member
MHB
1,844
811
$\displaystyle T(\vec{x}+\vec{y})
= T \begin{bmatrix} x_1+y_1 \\ x_2+y_2 \end{bmatrix}
=T\begin{bmatrix} 2(x_1+y_1)+x_2+y_2\\ x_1+y_1-4(x_2+y_2) \end{bmatrix}$
Only one typo: Top line of equations, third term doesn't need the T. You've already taken the transform.

The second line of equations needs some work. You have the correct answer, but the intermediate step is wrong. Is this also a typo?

It should be
\(\displaystyle T \left [ \begin{matrix} x_1 \\ x_2 \end{matrix} \right ] + T \left [ \begin{matrix} y_1 \\ y_2 \end{matrix} \right ] = \left [ \begin{matrix} 2x_1 + x_2 \\ x_1 - 4x_2 \end{matrix} \right ] + \left [ \begin{matrix} 2y_1 + y_2 \\ y_1 - 4y_2 \end{matrix} \right ] = \left [ \begin{matrix} 2(x_1 + y_1) + (x_2 + y_2) \\ (x_1 + y_1) - 4(x_2 + y_2) \end{matrix} \right ] \)

-Dan
 
  • #7
karush
Gold Member
MHB
3,267
4
ok really appreciate the help.

I still need more practice on these...

sorry for the wait on reply but I am limited to when the computer labs are open.

Mahalo...
 

Suggested for: 17.1 Determine if T is a linear transformation

Replies
1
Views
571
Replies
24
Views
944
Replies
4
Views
2K
Replies
12
Views
4K
Replies
4
Views
3K
Replies
2
Views
858
Replies
5
Views
3K
Replies
1
Views
3K
Top