MHB -10.1.1 write polar to rectangular

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Polar Rectangular
Click For Summary
The discussion focuses on converting the polar equation \( r = 5\sin(2\theta) \) into rectangular coordinates, leading to the equation \( x^2 + y^2 = 10xy \). Participants note that multiplying both sides by \( r \) and substituting \( r^2 \) with \( x^2 + y^2 \) is crucial for the conversion. There's a distinction made between the polar plot of \( r = 5\sin(2\theta) \), which resembles a flower shape, and the Cartesian plot \( (x^2 + y^2)^3 = (10xy)^2 \). The conversation highlights that while both equations represent the same graph, \( r = 5\sin(2x) \) is a sine wave in Cartesian coordinates.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textrm{write polar to rectangular coordinates}$
$$r=5\sin{2\theta}$$
$\textit{Multiply both sides by $r$}$
$$r^2=5r[\sin{2\theta}]
=5\cdot2[r\cos(\theta)r\cos(\theta)]$$
$\textit{then substitute $r^2$ with $x^2+y^2$ and
$[r\cos(\theta)r\cos(\theta)$ with $xy$}\\$
$\textit{then}\\$
$$x^2+y^2=10xy$$
hopefully
 
Mathematics news on Phys.org
karush said:
$\textrm{write polar to rectangular coordinates}$
$$r=5\sin{2\theta}$$
$\textit{Multiply both sides by $r$}$
$$r^2=5r[\sin{2\theta}]
=5\cdot2[r\cos(\theta)r\cos(\theta)]$$

You multiplied the LHS by $r$, but in applying an $r$ to both trig functions on the RHS, you effectively multiply that side by $r^2$.

I would begin with:

$$r=5\sin(2\theta)=10\sin(\theta)\cos(\theta)$$

So, now if we multiply both sides by $r^2$, we get:

$$r^3=10r\sin(\theta)r\sin(\theta)$$

$$\left(x^2+y^2\right)^{\frac{3}{2}}=10xy$$

Now, we must observe that in this form, the LHS is always positive, and so we will miss the petals in the 2nd and 4th quadrants (where the RHS is negative), so to get those, we need to square both sides:

$$\left(x^2+y^2\right)^{3}=(10xy)^2$$
 
I thought
$\displaystyle r=5sin(2x)$
and
$\displaystyle (x^2+y^2)^3=(10xy)^2$
would be the same graph?

one is a sine wave the other is a clover:cool:
 
karush said:
I thought
$\displaystyle r=5sin(2x)$
and
$\displaystyle (x^2+y^2)^3=(10xy)^2$
would be the same graph?

The polar plot:

$$r=5\sin(2\theta)$$

And the Cartesian plot:

$$\left(x^2+y^2\right)^{3}=(10xy)^2$$

Are equivalent.

However, the equation:

$$r=5\sin(2x)$$

is assumed to be plotted on a Cartesian coordinate system.

karush said:
one is a sine wave the other is a clover:cool:

Yes one is a sinusoid, while the other is referred to as a polar flower, I believe. :D
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
999
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K