MHB -10.1.1 write polar to rectangular

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Polar Rectangular
AI Thread Summary
The discussion focuses on converting the polar equation \( r = 5\sin(2\theta) \) into rectangular coordinates, leading to the equation \( x^2 + y^2 = 10xy \). Participants note that multiplying both sides by \( r \) and substituting \( r^2 \) with \( x^2 + y^2 \) is crucial for the conversion. There's a distinction made between the polar plot of \( r = 5\sin(2\theta) \), which resembles a flower shape, and the Cartesian plot \( (x^2 + y^2)^3 = (10xy)^2 \). The conversation highlights that while both equations represent the same graph, \( r = 5\sin(2x) \) is a sine wave in Cartesian coordinates.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textrm{write polar to rectangular coordinates}$
$$r=5\sin{2\theta}$$
$\textit{Multiply both sides by $r$}$
$$r^2=5r[\sin{2\theta}]
=5\cdot2[r\cos(\theta)r\cos(\theta)]$$
$\textit{then substitute $r^2$ with $x^2+y^2$ and
$[r\cos(\theta)r\cos(\theta)$ with $xy$}\\$
$\textit{then}\\$
$$x^2+y^2=10xy$$
hopefully
 
Mathematics news on Phys.org
karush said:
$\textrm{write polar to rectangular coordinates}$
$$r=5\sin{2\theta}$$
$\textit{Multiply both sides by $r$}$
$$r^2=5r[\sin{2\theta}]
=5\cdot2[r\cos(\theta)r\cos(\theta)]$$

You multiplied the LHS by $r$, but in applying an $r$ to both trig functions on the RHS, you effectively multiply that side by $r^2$.

I would begin with:

$$r=5\sin(2\theta)=10\sin(\theta)\cos(\theta)$$

So, now if we multiply both sides by $r^2$, we get:

$$r^3=10r\sin(\theta)r\sin(\theta)$$

$$\left(x^2+y^2\right)^{\frac{3}{2}}=10xy$$

Now, we must observe that in this form, the LHS is always positive, and so we will miss the petals in the 2nd and 4th quadrants (where the RHS is negative), so to get those, we need to square both sides:

$$\left(x^2+y^2\right)^{3}=(10xy)^2$$
 
I thought
$\displaystyle r=5sin(2x)$
and
$\displaystyle (x^2+y^2)^3=(10xy)^2$
would be the same graph?

one is a sine wave the other is a clover:cool:
 
karush said:
I thought
$\displaystyle r=5sin(2x)$
and
$\displaystyle (x^2+y^2)^3=(10xy)^2$
would be the same graph?

The polar plot:

$$r=5\sin(2\theta)$$

And the Cartesian plot:

$$\left(x^2+y^2\right)^{3}=(10xy)^2$$

Are equivalent.

However, the equation:

$$r=5\sin(2x)$$

is assumed to be plotted on a Cartesian coordinate system.

karush said:
one is a sine wave the other is a clover:cool:

Yes one is a sinusoid, while the other is referred to as a polar flower, I believe. :D
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top