10.8.3 Find the Taylor polynomial

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Polynomial Taylor
Click For Summary

Discussion Overview

The discussion revolves around finding the Taylor polynomial of orders 0, 1, 2, and 3 for the function \( f(x) = \sin{x} \) at a specific point \( a \), which is suggested to be \( \frac{5\pi}{6} \). Participants explore the calculations involved in deriving the polynomial and express concerns about clarity and correctness.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Homework-related

Main Points Raised

  • Some participants present the Taylor polynomial calculations for \( f(x) = \sin{x} \) at \( a = \frac{5\pi}{6} \), including evaluations of the function and its derivatives at that point.
  • There is a suggestion that the notation used in the calculations is confusing, particularly the reference to \( \sin\left(\frac{5x}{6}\right) \) instead of \( \sin\left(\frac{5\pi}{6}\right) \).
  • One participant expresses uncertainty about whether \( a \) was explicitly stated as \( \frac{5\pi}{6} \) in the original problem.
  • Another participant notes the tedious nature of the process and the potential for errors in calculations.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the Taylor polynomial calculations but express disagreement regarding the clarity of the problem statement and the notation used. The discussion remains unresolved regarding the explicit definition of \( a \) and the implications of the notation.

Contextual Notes

Participants highlight limitations in clarity and potential confusion arising from the notation used in the problem statement, which may lead to misunderstandings in the calculations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textrm{10.8.{7} Find the Taylor polynomial of orders $0, 1, 2$, and $3$ generated by $f$ at $a$.}$

\begin{align*} \displaystyle
f(x)&=\sin{x}
\end{align*}

\[ \begin{array}{llll}\displaystyle
f^0(x)&=\sin{x}&\therefore f^0(\frac{5x}{6})&=\frac{1}{2}\\
\\
f^1(x)&=\cos{x}&\therefore f^1(\frac{5x}{6})&=-\frac{\sqrt{3}}{2}\\
\\
f^2(x)&=-\sin{x}&\therefore f^2(\frac{5x}{6})&=-\frac{1}{2}\\
\\
f^3(x)&=-\cos{x}&\therefore f^3(\frac{5x}{6})&=\frac{\sqrt{3}}{2}\\
\end{array} \]\\

$\textrm{substitute in values}\\$
$\displaystyle
f(x)\approx\frac{\frac{1}{2}}{0!}(x-(\frac{5 \pi}{6}))^{0}
+\frac{- \frac{\sqrt{3}}{2}}{1!}(x-(\frac{5 \pi}{6}))^{1}
+\frac{- \frac{1}{2}}{2!}(x-(\frac{5 \pi}{6}))^{2}
+\frac{\frac{\sqrt{3}}{2}}{3!}(x-(\frac{5 \pi}{6}))^{3}$
$\textrm{substitute in values}$
$\displaystyle
\sin{\left (x \right )}\approx \frac{1}{2}
\frac{\sqrt{3}}{2}(x- \frac{5 \pi}{6})
- \frac{1}{4}(x- \frac{5 \pi}{6})^{2}
+\frac{\sqrt{3}}{12}(x- \frac{5 \pi}{6})^{3}
$
suggestions

hard to know what layTEX to use
 
Physics news on Phys.org
karush said:
$\textrm{10.8.{7} Find the Taylor polynomial of orders $0, 1, 2$, and $3$ generated by $f$ at $a$.}$

\begin{align*} \displaystyle
f(x)&=\sin{x}
\end{align*}

\[ \begin{array}{llll}\displaystyle
f^0(x)&=\sin{x}&\therefore f^0(\frac{5x}{6})&=\frac{1}{2}\\
\\
f^1(x)&=\cos{x}&\therefore f^1(\frac{5x}{6})&=-\frac{\sqrt{3}}{2}\\
\\
f^2(x)&=-\sin{x}&\therefore f^2(\frac{5x}{6})&=-\frac{1}{2}\\
\\
f^3(x)&=-\cos{x}&\therefore f^3(\frac{5x}{6})&=\frac{\sqrt{3}}{2}\\
\end{array} \]\\

$\textrm{substitute in values}\\$
$\displaystyle
f(x)\approx\frac{\frac{1}{2}}{0!}(x-(\frac{5 \pi}{6}))^{0}
+\frac{- \frac{\sqrt{3}}{2}}{1!}(x-(\frac{5 \pi}{6}))^{1}
+\frac{- \frac{1}{2}}{2!}(x-(\frac{5 \pi}{6}))^{2}
+\frac{\frac{\sqrt{3}}{2}}{3!}(x-(\frac{5 \pi}{6}))^{3}$
$\textrm{substitute in values}$
$\displaystyle
\sin{\left (x \right )}\approx \frac{1}{2}
\frac{\sqrt{3}}{2}(x- \frac{5 \pi}{6})
- \frac{1}{4}(x- \frac{5 \pi}{6})^{2}
+\frac{\sqrt{3}}{12}(x- \frac{5 \pi}{6})^{3}
$
suggestions

hard to know what layTEX to use

It's correct, good job :)
 
I expect that answer is correct but your work is very confusing! You state the question as "find the Taylor series" at x= a. But then you have "sin\left(\frac{5x}{6}\right)". Did you mean \frac{5\pi}{6}? If so where were you told that a= \frac{5\pi}{6}.
 
I was confused too but that's the way MML gave it.

its a very tedious process easy to make errors
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K