MHB 10.8.3 Find the Taylor polynomial

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Polynomial Taylor
Click For Summary
The discussion focuses on finding the Taylor polynomial of the function f(x) = sin(x) at a specific point, a = 5π/6. The derivatives of the function at this point yield values for the 0th, 1st, 2nd, and 3rd orders, which are then substituted into the Taylor series formula. The resulting polynomial approximation is expressed as a combination of these derivatives evaluated at a, leading to a polynomial that approximates sin(x) near 5π/6. Participants express confusion over the notation and the correct interpretation of the variable a, highlighting the complexity of the process. Overall, the thread emphasizes the importance of clarity in mathematical communication.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textrm{10.8.{7} Find the Taylor polynomial of orders $0, 1, 2$, and $3$ generated by $f$ at $a$.}$

\begin{align*} \displaystyle
f(x)&=\sin{x}
\end{align*}

\[ \begin{array}{llll}\displaystyle
f^0(x)&=\sin{x}&\therefore f^0(\frac{5x}{6})&=\frac{1}{2}\\
\\
f^1(x)&=\cos{x}&\therefore f^1(\frac{5x}{6})&=-\frac{\sqrt{3}}{2}\\
\\
f^2(x)&=-\sin{x}&\therefore f^2(\frac{5x}{6})&=-\frac{1}{2}\\
\\
f^3(x)&=-\cos{x}&\therefore f^3(\frac{5x}{6})&=\frac{\sqrt{3}}{2}\\
\end{array} \]\\

$\textrm{substitute in values}\\$
$\displaystyle
f(x)\approx\frac{\frac{1}{2}}{0!}(x-(\frac{5 \pi}{6}))^{0}
+\frac{- \frac{\sqrt{3}}{2}}{1!}(x-(\frac{5 \pi}{6}))^{1}
+\frac{- \frac{1}{2}}{2!}(x-(\frac{5 \pi}{6}))^{2}
+\frac{\frac{\sqrt{3}}{2}}{3!}(x-(\frac{5 \pi}{6}))^{3}$
$\textrm{substitute in values}$
$\displaystyle
\sin{\left (x \right )}\approx \frac{1}{2}
\frac{\sqrt{3}}{2}(x- \frac{5 \pi}{6})
- \frac{1}{4}(x- \frac{5 \pi}{6})^{2}
+\frac{\sqrt{3}}{12}(x- \frac{5 \pi}{6})^{3}
$
suggestions

hard to know what layTEX to use
 
Physics news on Phys.org
karush said:
$\textrm{10.8.{7} Find the Taylor polynomial of orders $0, 1, 2$, and $3$ generated by $f$ at $a$.}$

\begin{align*} \displaystyle
f(x)&=\sin{x}
\end{align*}

\[ \begin{array}{llll}\displaystyle
f^0(x)&=\sin{x}&\therefore f^0(\frac{5x}{6})&=\frac{1}{2}\\
\\
f^1(x)&=\cos{x}&\therefore f^1(\frac{5x}{6})&=-\frac{\sqrt{3}}{2}\\
\\
f^2(x)&=-\sin{x}&\therefore f^2(\frac{5x}{6})&=-\frac{1}{2}\\
\\
f^3(x)&=-\cos{x}&\therefore f^3(\frac{5x}{6})&=\frac{\sqrt{3}}{2}\\
\end{array} \]\\

$\textrm{substitute in values}\\$
$\displaystyle
f(x)\approx\frac{\frac{1}{2}}{0!}(x-(\frac{5 \pi}{6}))^{0}
+\frac{- \frac{\sqrt{3}}{2}}{1!}(x-(\frac{5 \pi}{6}))^{1}
+\frac{- \frac{1}{2}}{2!}(x-(\frac{5 \pi}{6}))^{2}
+\frac{\frac{\sqrt{3}}{2}}{3!}(x-(\frac{5 \pi}{6}))^{3}$
$\textrm{substitute in values}$
$\displaystyle
\sin{\left (x \right )}\approx \frac{1}{2}
\frac{\sqrt{3}}{2}(x- \frac{5 \pi}{6})
- \frac{1}{4}(x- \frac{5 \pi}{6})^{2}
+\frac{\sqrt{3}}{12}(x- \frac{5 \pi}{6})^{3}
$
suggestions

hard to know what layTEX to use

It's correct, good job :)
 
I expect that answer is correct but your work is very confusing! You state the question as "find the Taylor series" at x= a. But then you have "sin\left(\frac{5x}{6}\right)". Did you mean \frac{5\pi}{6}? If so where were you told that a= \frac{5\pi}{6}.
 
I was confused too but that's the way MML gave it.

its a very tedious process easy to make errors
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K