10.8.3 Find the Taylor polynomial

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Polynomial Taylor
Click For Summary
SUMMARY

The discussion focuses on finding the Taylor polynomial of the function \( f(x) = \sin{x} \) at the point \( a = \frac{5\pi}{6} \). The Taylor polynomials of orders 0, 1, 2, and 3 are calculated, yielding specific values for \( f^0, f^1, f^2, \) and \( f^3 \) at \( \frac{5\pi}{6} \). The final approximation of the sine function is presented as a polynomial expression involving these derivatives. The conversation also highlights the potential confusion regarding the notation used in the problem statement.

PREREQUISITES
  • Understanding of Taylor series and polynomials
  • Knowledge of trigonometric functions, specifically sine and cosine
  • Familiarity with calculus concepts such as derivatives
  • Basic proficiency in LaTeX for mathematical notation
NEXT STEPS
  • Study the derivation of Taylor series for various functions
  • Learn about the convergence of Taylor series
  • Explore the applications of Taylor polynomials in approximation theory
  • Practice using LaTeX for typesetting mathematical expressions
USEFUL FOR

Students and educators in mathematics, particularly those studying calculus and approximation methods, as well as anyone involved in mathematical writing or typesetting using LaTeX.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textrm{10.8.{7} Find the Taylor polynomial of orders $0, 1, 2$, and $3$ generated by $f$ at $a$.}$

\begin{align*} \displaystyle
f(x)&=\sin{x}
\end{align*}

\[ \begin{array}{llll}\displaystyle
f^0(x)&=\sin{x}&\therefore f^0(\frac{5x}{6})&=\frac{1}{2}\\
\\
f^1(x)&=\cos{x}&\therefore f^1(\frac{5x}{6})&=-\frac{\sqrt{3}}{2}\\
\\
f^2(x)&=-\sin{x}&\therefore f^2(\frac{5x}{6})&=-\frac{1}{2}\\
\\
f^3(x)&=-\cos{x}&\therefore f^3(\frac{5x}{6})&=\frac{\sqrt{3}}{2}\\
\end{array} \]\\

$\textrm{substitute in values}\\$
$\displaystyle
f(x)\approx\frac{\frac{1}{2}}{0!}(x-(\frac{5 \pi}{6}))^{0}
+\frac{- \frac{\sqrt{3}}{2}}{1!}(x-(\frac{5 \pi}{6}))^{1}
+\frac{- \frac{1}{2}}{2!}(x-(\frac{5 \pi}{6}))^{2}
+\frac{\frac{\sqrt{3}}{2}}{3!}(x-(\frac{5 \pi}{6}))^{3}$
$\textrm{substitute in values}$
$\displaystyle
\sin{\left (x \right )}\approx \frac{1}{2}
\frac{\sqrt{3}}{2}(x- \frac{5 \pi}{6})
- \frac{1}{4}(x- \frac{5 \pi}{6})^{2}
+\frac{\sqrt{3}}{12}(x- \frac{5 \pi}{6})^{3}
$
suggestions

hard to know what layTEX to use
 
Physics news on Phys.org
karush said:
$\textrm{10.8.{7} Find the Taylor polynomial of orders $0, 1, 2$, and $3$ generated by $f$ at $a$.}$

\begin{align*} \displaystyle
f(x)&=\sin{x}
\end{align*}

\[ \begin{array}{llll}\displaystyle
f^0(x)&=\sin{x}&\therefore f^0(\frac{5x}{6})&=\frac{1}{2}\\
\\
f^1(x)&=\cos{x}&\therefore f^1(\frac{5x}{6})&=-\frac{\sqrt{3}}{2}\\
\\
f^2(x)&=-\sin{x}&\therefore f^2(\frac{5x}{6})&=-\frac{1}{2}\\
\\
f^3(x)&=-\cos{x}&\therefore f^3(\frac{5x}{6})&=\frac{\sqrt{3}}{2}\\
\end{array} \]\\

$\textrm{substitute in values}\\$
$\displaystyle
f(x)\approx\frac{\frac{1}{2}}{0!}(x-(\frac{5 \pi}{6}))^{0}
+\frac{- \frac{\sqrt{3}}{2}}{1!}(x-(\frac{5 \pi}{6}))^{1}
+\frac{- \frac{1}{2}}{2!}(x-(\frac{5 \pi}{6}))^{2}
+\frac{\frac{\sqrt{3}}{2}}{3!}(x-(\frac{5 \pi}{6}))^{3}$
$\textrm{substitute in values}$
$\displaystyle
\sin{\left (x \right )}\approx \frac{1}{2}
\frac{\sqrt{3}}{2}(x- \frac{5 \pi}{6})
- \frac{1}{4}(x- \frac{5 \pi}{6})^{2}
+\frac{\sqrt{3}}{12}(x- \frac{5 \pi}{6})^{3}
$
suggestions

hard to know what layTEX to use

It's correct, good job :)
 
I expect that answer is correct but your work is very confusing! You state the question as "find the Taylor series" at x= a. But then you have "sin\left(\frac{5x}{6}\right)". Did you mean \frac{5\pi}{6}? If so where were you told that a= \frac{5\pi}{6}.
 
I was confused too but that's the way MML gave it.

its a very tedious process easy to make errors
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K