MHB 11.e.28 Find the length of the cardroid

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Length
Click For Summary
SUMMARY

The length of the cardroid defined by the polar equation \( r = 8(1 - \sin \theta) \) is calculated using the formula for arc length. The derivative \( \frac{dr}{d\theta} \) is determined to be \( -8\cos(\theta) \). The integral for the arc length \( S \) is expressed as \( S = \int_{0}^{2\pi} \sqrt{(8(1-\sin \theta))^2 + (-8\cos(\theta))^2} \, d\theta \), simplifying to \( S = \int_{0}^{2\pi} \sqrt{64(2 - 2\sin(\theta))} \, d\theta \). The final length of the cardroid is computed as \( 8\sqrt{2} \).

PREREQUISITES
  • Understanding of polar coordinates and equations
  • Knowledge of calculus, specifically integration and derivatives
  • Familiarity with trigonometric identities
  • Ability to evaluate definite integrals
NEXT STEPS
  • Study the derivation of arc length in polar coordinates
  • Learn about trigonometric identities and their applications in calculus
  • Explore advanced integration techniques for complex functions
  • Investigate other polar curves and their properties
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of polar curves and arc length calculations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
find the length of the cardroid
\begin{align*}\displaystyle
L&=\sqrt{r^2+\left( \frac{dr}{d\theta}\right)^2}\\
r&=8(1-\sin {\theta})\therefore
\frac{dr}{d\theta}&=-8\cos\left(\theta\right)\\
r^2+\left( \frac{dr}{d\theta}\right)^2
&=(8(1-\sin {\theta}))^2+((-8)\cos(\theta))^2\\
&=64\left[1-2\sin\left({\theta}\right)
+\sin^2\left({\theta}\right)+\cos^2\left({\theta}\right)\right]\\
&=64\left[2-2\sin\left({\theta}\right)\right]
=128\left[1-\sin\left({\theta}\right)\right]\\
&=128\left[2\sin^2\left({\frac{\pi}{4}
-\frac{\theta}{2}}\right)\right]\\
L&=16\sqrt{\sin^2\left({\frac{\pi}{4}
-\frac{\theta}{2}}\right)}\\
&= 16\sin\left(\frac{\pi}{4}\right)=16\left(\frac{\sqrt{2}}{2}\right)=8\sqrt{2}
\end{align*}
 
Last edited:
Physics news on Phys.org
Re: 11.e.28 find the length of the cardroid

Hmm...

Arc length, $s$, is given by

$$s=\int_a^b\sqrt{1+\left(\frac{dy}{dx}\right)^2}\,dx$$
 
Re: 11.e.28 find the length of the cardroid

$\text{find the length of the cardroid-}\\$
$\begin{align*}\displaystyle
S&=\int_{0}^{2\pi} \sqrt{r^2+\left( \frac{dr}{d\theta}\right)^2} \, d\theta\\
r&=8(1-\sin {\theta})\therefore
\frac{dr}{d\theta}=-8\cos\left(\theta\right) \\
&=\int_{0}^{2\pi}
\sqrt{(8(1-\sin {\theta}))^2+((-8)\cos(\theta))^2} \, d\theta \\
&=\int_{0}^{2\pi}\sqrt{
64\left[1-2\sin\left({\theta}\right)
+\sin^2\left({\theta}\right)+\cos^2\left({\theta}
\right)\right]}\, d\theta \\
&=\int_{0}^{2\pi}\sqrt{
64\left[2-2\sin\left({\theta}\right)\right]}\, d\theta
\end{align*} $

so far?
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K