MHB 11.e.28 Find the length of the cardroid

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Length
Click For Summary
The discussion focuses on calculating the length of a cardioid defined by the polar equation r = 8(1 - sin(θ)). The arc length formula is applied, leading to the integral S = ∫ from 0 to 2π of the square root of r² plus the derivative of r with respect to θ squared. The calculations simplify to an integral involving a factor of 64 and the sine function. The final result for the length of the cardioid is determined to be 8√2.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
find the length of the cardroid
\begin{align*}\displaystyle
L&=\sqrt{r^2+\left( \frac{dr}{d\theta}\right)^2}\\
r&=8(1-\sin {\theta})\therefore
\frac{dr}{d\theta}&=-8\cos\left(\theta\right)\\
r^2+\left( \frac{dr}{d\theta}\right)^2
&=(8(1-\sin {\theta}))^2+((-8)\cos(\theta))^2\\
&=64\left[1-2\sin\left({\theta}\right)
+\sin^2\left({\theta}\right)+\cos^2\left({\theta}\right)\right]\\
&=64\left[2-2\sin\left({\theta}\right)\right]
=128\left[1-\sin\left({\theta}\right)\right]\\
&=128\left[2\sin^2\left({\frac{\pi}{4}
-\frac{\theta}{2}}\right)\right]\\
L&=16\sqrt{\sin^2\left({\frac{\pi}{4}
-\frac{\theta}{2}}\right)}\\
&= 16\sin\left(\frac{\pi}{4}\right)=16\left(\frac{\sqrt{2}}{2}\right)=8\sqrt{2}
\end{align*}
 
Last edited:
Physics news on Phys.org
Re: 11.e.28 find the length of the cardroid

Hmm...

Arc length, $s$, is given by

$$s=\int_a^b\sqrt{1+\left(\frac{dy}{dx}\right)^2}\,dx$$
 
Re: 11.e.28 find the length of the cardroid

$\text{find the length of the cardroid-}\\$
$\begin{align*}\displaystyle
S&=\int_{0}^{2\pi} \sqrt{r^2+\left( \frac{dr}{d\theta}\right)^2} \, d\theta\\
r&=8(1-\sin {\theta})\therefore
\frac{dr}{d\theta}=-8\cos\left(\theta\right) \\
&=\int_{0}^{2\pi}
\sqrt{(8(1-\sin {\theta}))^2+((-8)\cos(\theta))^2} \, d\theta \\
&=\int_{0}^{2\pi}\sqrt{
64\left[1-2\sin\left({\theta}\right)
+\sin^2\left({\theta}\right)+\cos^2\left({\theta}
\right)\right]}\, d\theta \\
&=\int_{0}^{2\pi}\sqrt{
64\left[2-2\sin\left({\theta}\right)\right]}\, d\theta
\end{align*} $

so far?
 
Last edited:
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K