MHB 13.3.2 What is the 50th term of the sequence

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Sequence Term
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The 3rd and 4th terms of an arithmetic sequence are 13 and 18. respectively.
What is the 50th term of the sequence!
a, 248 b. 250 c. 253 d, 258 e, 763

b the common difference is 5 so $5\cdot 50=\boxed{250}$

basically these are easy but I still seem to miss the goal posts
 
Mathematics news on Phys.org
Okay, so d = 5. What is the first term in the series? What is the equation to get the nth term of the series?

-Dan
 
Since this has been here a while and, as topsquark implied, Karush's answer is wrong:
An "arithmetic sequence" has the form a, a+ r, a+ 2r, a+ 3r, a+ 4r ..., with "common difference" between two successive terms r. The general term is "a+ (n-1)r", NOT "nr".

Here two successive terms are 13 and 18 so the "common difference" is 18- 13= 5 as Karush said. But 13= 3+ 2(5) and 18= 3+ 3(5) so the general term is $a_n= 3+ (n-1)5$ and the 50th term is 3+ 49(5)= 248, not 250.
 
Mahalo
yeah that post kinda got left hanging
i never found these essy
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
2K
Replies
2
Views
2K
Replies
15
Views
2K
Replies
10
Views
3K
Replies
39
Views
12K
Back
Top