MHB 13 is a linear transformation and .......Determine T

Click For Summary
The discussion focuses on determining the output of a linear transformation T applied to the vector [1, 2, 3] in R^3, given specific outputs for other vectors. Participants explore using linear combinations of the provided vectors to express [1, 2, 3] and apply T accordingly. They emphasize the linearity of T, which allows for the transformation of combinations of inputs based on the known outputs. Confusion arises regarding the steps to build the linear combination and the application of T to scalars. The conversation highlights the importance of understanding linear transformations in the context of vector spaces.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Suppose that $T: \Bbb{R}^3 \rightarrow \Bbb{R}^3$ is a linear transformation and
$$T \begin{bmatrix}
1 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\2 \\1 \\
\end{bmatrix},
\quad T \begin{bmatrix}
1 \\0 \\1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\0 \\2 \\
\end{bmatrix}, \quad
T \begin{bmatrix}
0 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \\2 \\3 \\
\end{bmatrix}.$$
Determine $T
\begin{bmatrix}
1 \\2 \\3 \\
\end{bmatrix}$

ok this should be easy... but.. the examples were not that close to this
I presume we could start with the middle one.
 
Physics news on Phys.org
karush said:
Suppose that $T: \Bbb{R}^3 \rightarrow \Bbb{R}^3$ is a linear transformation and
$$T \begin{bmatrix}
1 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\2 \\1 \\
\end{bmatrix},
\quad T \begin{bmatrix}
1 \\0 \\1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\0 \\2 \\
\end{bmatrix}, \quad
T \begin{bmatrix}
0 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \\2 \\3 \\
\end{bmatrix}.$$
Determine $T
\begin{bmatrix}
1 \\2 \\3 \\
\end{bmatrix}$

ok this should be easy... but.. the examples were not that close to this
I presume we could start with the middle one.
Well, the most direct method would be to simply solve for T. But since T is linear there is another way.

Can you build [math]\left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] [/math] out of a linear combination of [math]\left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] [/math], [math]\left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] [/math], and [math]\left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]?

-Dan
 
ok this probably is not exactly what it is supposed to be but

$T \begin{bmatrix} 1 \\1 \\0 \end{bmatrix}
=\begin{bmatrix} 1 \\2 \\1 \end{bmatrix},
\quad T \begin{bmatrix} 1 \\0 \\1 \end{bmatrix}
= \begin{bmatrix} 1 \\0 \\2 \end{bmatrix}'
\quad T \begin{bmatrix} 0 \\1 \\0 \end{bmatrix}
= \begin{bmatrix} 2 \\2 \\3 \end{bmatrix}$.

$=T\left[\begin{array}{c}
1&1&0\\
1&0&1\\
0&1&0
\end{array}\right]$

or possibly
$\left[\begin{array}{c}x_1+x_2 \\x_1+x_3\\x_2\end{array}\right]$
 
Last edited:
karush said:
ok this probably is not exactly what it is supposed to be but

$T \begin{bmatrix} 1 \\1 \\0 \end{bmatrix}
=\begin{bmatrix} 1 \\2 \\1 \end{bmatrix},
\quad T \begin{bmatrix} 1 \\0 \\1 \end{bmatrix}
= \begin{bmatrix} 1 \\0 \\2 \end{bmatrix}'
\quad T \begin{bmatrix} 0 \\1 \\0 \end{bmatrix}
= \begin{bmatrix} 2 \\2 \\3 \end{bmatrix}$.

$=T\left[\begin{array}{c}
1&1&0\\
1&0&1\\
0&1&0
\end{array}\right]$

are we trying to build $Ax=B$
What I am trying to point you toward is
[math]\left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] = a \left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] + b \left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] + c \left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]

so
[math]T \left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] = a T \left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] + b T \left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] + c T \left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]

Note that this can only be done if T is linear.

-Dan
 
then?
$\left[\begin{array}{c}Ta+Tb \\Ta+Tc\\Tb\end{array}\right]$i think I am getting confused by looking at too many examples

how would we know if T is linear?
 
karush said:
how would we know if T is linear?
karush said:
Suppose that $T: \Bbb{R}^3 \rightarrow \Bbb{R}^3$ is a linear transformation

karush said:
then?
topsquark said:
[math]T \left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] = a T \left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] + b T \left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] + c T \left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]
and
karush said:
$$T \begin{bmatrix}
1 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\2 \\1 \\
\end{bmatrix},
\quad T \begin{bmatrix}
1 \\0 \\1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\0 \\2 \\
\end{bmatrix}, \quad
T \begin{bmatrix}
0 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \\2 \\3 \\
\end{bmatrix}.$$

As for
karush said:
$\left[\begin{array}{c}Ta+Tb \\Ta+Tc\\Tb\end{array}\right]$
$Ta$ does not makes sense for $a\in\mathbb{R}$ because $T:\mathbb{R}^3\to\mathbb{R}^3$.
 
ok apparently I'm not understanding the steps
not sure what I should be asking
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K