13 is a linear transformation and .......Determine T

Click For Summary
SUMMARY

The discussion focuses on determining the output of a linear transformation \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) given specific input vectors and their corresponding outputs. The transformation is defined by three mappings: \( T \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \), \( T \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \), and \( T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \). The goal is to find \( T \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \) by expressing it as a linear combination of the known vectors. The discussion emphasizes the linearity of \( T \) and the use of linear combinations to derive the desired output.

PREREQUISITES
  • Understanding of linear transformations in vector spaces
  • Familiarity with linear combinations of vectors
  • Knowledge of matrix representation of linear transformations
  • Basic proficiency in solving systems of linear equations
NEXT STEPS
  • Study the properties of linear transformations in \( \mathbb{R}^n \)
  • Learn how to express vectors as linear combinations of other vectors
  • Explore the concept of matrix representation for linear transformations
  • Practice solving systems of linear equations using matrix methods
USEFUL FOR

Students and educators in linear algebra, mathematicians working with vector spaces, and anyone interested in understanding linear transformations and their applications.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Suppose that $T: \Bbb{R}^3 \rightarrow \Bbb{R}^3$ is a linear transformation and
$$T \begin{bmatrix}
1 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\2 \\1 \\
\end{bmatrix},
\quad T \begin{bmatrix}
1 \\0 \\1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\0 \\2 \\
\end{bmatrix}, \quad
T \begin{bmatrix}
0 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \\2 \\3 \\
\end{bmatrix}.$$
Determine $T
\begin{bmatrix}
1 \\2 \\3 \\
\end{bmatrix}$

ok this should be easy... but.. the examples were not that close to this
I presume we could start with the middle one.
 
Physics news on Phys.org
karush said:
Suppose that $T: \Bbb{R}^3 \rightarrow \Bbb{R}^3$ is a linear transformation and
$$T \begin{bmatrix}
1 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\2 \\1 \\
\end{bmatrix},
\quad T \begin{bmatrix}
1 \\0 \\1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\0 \\2 \\
\end{bmatrix}, \quad
T \begin{bmatrix}
0 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \\2 \\3 \\
\end{bmatrix}.$$
Determine $T
\begin{bmatrix}
1 \\2 \\3 \\
\end{bmatrix}$

ok this should be easy... but.. the examples were not that close to this
I presume we could start with the middle one.
Well, the most direct method would be to simply solve for T. But since T is linear there is another way.

Can you build [math]\left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] [/math] out of a linear combination of [math]\left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] [/math], [math]\left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] [/math], and [math]\left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]?

-Dan
 
ok this probably is not exactly what it is supposed to be but

$T \begin{bmatrix} 1 \\1 \\0 \end{bmatrix}
=\begin{bmatrix} 1 \\2 \\1 \end{bmatrix},
\quad T \begin{bmatrix} 1 \\0 \\1 \end{bmatrix}
= \begin{bmatrix} 1 \\0 \\2 \end{bmatrix}'
\quad T \begin{bmatrix} 0 \\1 \\0 \end{bmatrix}
= \begin{bmatrix} 2 \\2 \\3 \end{bmatrix}$.

$=T\left[\begin{array}{c}
1&1&0\\
1&0&1\\
0&1&0
\end{array}\right]$

or possibly
$\left[\begin{array}{c}x_1+x_2 \\x_1+x_3\\x_2\end{array}\right]$
 
Last edited:
karush said:
ok this probably is not exactly what it is supposed to be but

$T \begin{bmatrix} 1 \\1 \\0 \end{bmatrix}
=\begin{bmatrix} 1 \\2 \\1 \end{bmatrix},
\quad T \begin{bmatrix} 1 \\0 \\1 \end{bmatrix}
= \begin{bmatrix} 1 \\0 \\2 \end{bmatrix}'
\quad T \begin{bmatrix} 0 \\1 \\0 \end{bmatrix}
= \begin{bmatrix} 2 \\2 \\3 \end{bmatrix}$.

$=T\left[\begin{array}{c}
1&1&0\\
1&0&1\\
0&1&0
\end{array}\right]$

are we trying to build $Ax=B$
What I am trying to point you toward is
[math]\left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] = a \left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] + b \left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] + c \left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]

so
[math]T \left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] = a T \left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] + b T \left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] + c T \left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]

Note that this can only be done if T is linear.

-Dan
 
then?
$\left[\begin{array}{c}Ta+Tb \\Ta+Tc\\Tb\end{array}\right]$i think I am getting confused by looking at too many examples

how would we know if T is linear?
 
karush said:
how would we know if T is linear?
karush said:
Suppose that $T: \Bbb{R}^3 \rightarrow \Bbb{R}^3$ is a linear transformation

karush said:
then?
topsquark said:
[math]T \left [ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right ] = a T \left [ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right ] + b T \left [ \begin{matrix} 1 \\ 0 \\ 1 \end{matrix} \right ] + c T \left [ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right ] [/math]
and
karush said:
$$T \begin{bmatrix}
1 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\2 \\1 \\
\end{bmatrix},
\quad T \begin{bmatrix}
1 \\0 \\1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\0 \\2 \\
\end{bmatrix}, \quad
T \begin{bmatrix}
0 \\1 \\0 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \\2 \\3 \\
\end{bmatrix}.$$

As for
karush said:
$\left[\begin{array}{c}Ta+Tb \\Ta+Tc\\Tb\end{array}\right]$
$Ta$ does not makes sense for $a\in\mathbb{R}$ because $T:\mathbb{R}^3\to\mathbb{R}^3$.
 
ok apparently I'm not understanding the steps
not sure what I should be asking
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K