15.6.19 Find the mass and centroid

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Centroid Mass
Click For Summary
SUMMARY

The discussion focuses on calculating the mass and centroid of a thin plate with constant density, bounded by the curves \(y=\ln x\), the x-axis, and \(x=e\). The mass \(m\) is derived using a double integral, resulting in \(m=\rho A\) where \(A=1\). The centroid coordinates are determined to be \(\left(\overline{x},\overline{y}\right)=\left(\frac{e^2+1}{4},\frac{e-2}{2}\right)\). Integration by parts (IBP) is employed to evaluate the necessary integrals for both mass and centroid calculations.

PREREQUISITES
  • Understanding of double integrals in calculus
  • Familiarity with integration by parts (IBP)
  • Knowledge of the natural logarithm function and its properties
  • Basic concepts of mass density in physics
NEXT STEPS
  • Study integration techniques, specifically Integration by Parts (IBP)
  • Explore applications of double integrals in calculating areas and volumes
  • Learn about centroid calculations for various geometric shapes
  • Investigate the properties of logarithmic functions and their integrals
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are involved in calculus, particularly in applications related to mass and centroid calculations of geometric shapes.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the mass and centroid of the following thin plate assuming constant density
Sketch the region corresponding
to the plate and indicate the location
of the center is the mass
The region bounded by
$$y=ln x$$
$$x-axis$$
$$x=e$$
\begin{align}\displaystyle
\left(\overline{x},\overline{y}\right)
&=\left(\frac{my}{m}\frac{mx}{m}\right)\\
m&=\int_{a}^{b}\int_{a}^{b}xy \, dA\\
&=\int_{1}^{e}\int_{0}^{\ln{x}}xy \, dydx\\
&=\int_{1}^{e}x\left[\int_{1}^{\ln{x}} y \, dy\right]dx\\
&=\int_{1}^{e}x\left[ \frac{y^2}{2}\right]_0^{\ln{x}} \ dx\\
&=\int_{1}^{e}x\ln{x} \, dx\\
W|A &=\frac{1}{4}\left(1+e^2 \right)
\end{align}
so ?
the centroid is:
$$\left[\frac{e^2+1}{4},\frac{e}{2}-1\right]$$
 
Last edited:
Physics news on Phys.org
Let's begin by sketching the region making up the lamina:

View attachment 7353

Okay, now for some constant mass density $\rho$ over this area $A$, we have by definition:

$$\rho=\frac{m}{A}\implies m=\rho A$$

To find $A$, I presume we are to use a double iterated integral. I would use vertical strips:

$$A=\int_{1}^{e}\int_{0}^{\ln(x)}\,dy\,dx=\int_{1}^{e}\ln(x)\,dx$$

Use IBP, where:

$$u=\ln(x)\implies du=\frac{1}{x}\,dx$$

$$dv=dx\implies v=x$$

Hence:

$$A=\left[x\ln(x)\right]_1^e-\int_1^e\,dx=\left(e-0\right)-(e-1)=1$$

And so we have:

$$m=\rho$$

To find the centroid $\left(\overline{x},\overline{y}\right)$, we use:

$$\overline{x}=\frac{1}{A}\int_1^e x\ln(x)\,dx$$

Use IBP where:

$$u=\ln(x)\implies du=\frac{1}{x}\,dx$$

$$dv=x\,dx\implies v=\frac{1}{2}x^2$$

And so we have (recalling $A=1$):

$$\overline{x}=\left[\frac{1}{2}x^2\ln(x)\right]_1^e-\frac{1}{2}\int_1^e x\,dx=\left(\frac{1}{2}e^2\right)-\left(\frac{1}{4}\left(e^2-1\right)\right)=\frac{e^2+1}{4}$$

Next, we use:

$$\overline{y}=\frac{1}{2}\int_1^e \ln^2(x)\,dx$$

Use IBP, where:

$$u=\ln^2(x)\implies du=\frac{2}{x}\ln(x)\,dx$$

$$dv=dx\implies v=x$$

Thus:

$$\overline{y}=\frac{1}{2}\left(\left[x\ln^2(x)\right]_1^e-2\int_1^e \ln(x)\,dx\right)=\frac{1}{2}\left(e-2\right)=\frac{e-2}{2}$$

And so the centroid is:

$$\left(\overline{x},\overline{y}\right)=\left(\frac{e^2+1}{4},\frac{e-2}{2}\right)\quad\checkmark$$
 

Attachments

  • karush_15-6-19.png
    karush_15-6-19.png
    11.1 KB · Views: 146
mahalo

Awsome help as usual🏄
 

Attachments

  • karush_15-6-19a.png
    karush_15-6-19a.png
    4.1 KB · Views: 147
karush said:
Find the mass and centroid of the following thin plate assuming constant density
Sketch the region corresponding
to the plate and indicate the location
of the center is the mass
The region bounded by
$$y=ln x$$
$$x-axis$$
$$x=e$$
\begin{align}\displaystyle
\left(\overline{x},\overline{y}\right)
&=\left(\frac{my}{m}\frac{mx}{m}\right)\\
m&=\int_{a}^{b}\int_{a}^{b}xy \, dA\\
Where did "xy" come from? You are told that the density is constant, say C. The mass is $\int\int C dA$

&=\int_{1}^{e}\int_{0}^{\ln{x}}xy \, dydx\\
&=\int_{1}^{e}x\left[\int_{1}^{\ln{x}} y \, dy\right]dx\\
&=\int_{1}^{e}x\left[ \frac{y^2}{2}\right]_0^{\ln{x}} \ dx\\
&=\int_{1}^{e}x\ln{x} \, dx\\
W|A &=\frac{1}{4}\left(1+e^2 \right)
\end{align}
so ?
the centroid is:
$$\left[\frac{e^2+1}{4},\frac{e}{2}-1\right]$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K