MHB 15.6.19 Find the mass and centroid

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Centroid Mass
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the mass and centroid of the following thin plate assuming constant density
Sketch the region corresponding
to the plate and indicate the location
of the center is the mass
The region bounded by
$$y=ln x$$
$$x-axis$$
$$x=e$$
\begin{align}\displaystyle
\left(\overline{x},\overline{y}\right)
&=\left(\frac{my}{m}\frac{mx}{m}\right)\\
m&=\int_{a}^{b}\int_{a}^{b}xy \, dA\\
&=\int_{1}^{e}\int_{0}^{\ln{x}}xy \, dydx\\
&=\int_{1}^{e}x\left[\int_{1}^{\ln{x}} y \, dy\right]dx\\
&=\int_{1}^{e}x\left[ \frac{y^2}{2}\right]_0^{\ln{x}} \ dx\\
&=\int_{1}^{e}x\ln{x} \, dx\\
W|A &=\frac{1}{4}\left(1+e^2 \right)
\end{align}
so ?
the centroid is:
$$\left[\frac{e^2+1}{4},\frac{e}{2}-1\right]$$
 
Last edited:
Physics news on Phys.org
Let's begin by sketching the region making up the lamina:

View attachment 7353

Okay, now for some constant mass density $\rho$ over this area $A$, we have by definition:

$$\rho=\frac{m}{A}\implies m=\rho A$$

To find $A$, I presume we are to use a double iterated integral. I would use vertical strips:

$$A=\int_{1}^{e}\int_{0}^{\ln(x)}\,dy\,dx=\int_{1}^{e}\ln(x)\,dx$$

Use IBP, where:

$$u=\ln(x)\implies du=\frac{1}{x}\,dx$$

$$dv=dx\implies v=x$$

Hence:

$$A=\left[x\ln(x)\right]_1^e-\int_1^e\,dx=\left(e-0\right)-(e-1)=1$$

And so we have:

$$m=\rho$$

To find the centroid $\left(\overline{x},\overline{y}\right)$, we use:

$$\overline{x}=\frac{1}{A}\int_1^e x\ln(x)\,dx$$

Use IBP where:

$$u=\ln(x)\implies du=\frac{1}{x}\,dx$$

$$dv=x\,dx\implies v=\frac{1}{2}x^2$$

And so we have (recalling $A=1$):

$$\overline{x}=\left[\frac{1}{2}x^2\ln(x)\right]_1^e-\frac{1}{2}\int_1^e x\,dx=\left(\frac{1}{2}e^2\right)-\left(\frac{1}{4}\left(e^2-1\right)\right)=\frac{e^2+1}{4}$$

Next, we use:

$$\overline{y}=\frac{1}{2}\int_1^e \ln^2(x)\,dx$$

Use IBP, where:

$$u=\ln^2(x)\implies du=\frac{2}{x}\ln(x)\,dx$$

$$dv=dx\implies v=x$$

Thus:

$$\overline{y}=\frac{1}{2}\left(\left[x\ln^2(x)\right]_1^e-2\int_1^e \ln(x)\,dx\right)=\frac{1}{2}\left(e-2\right)=\frac{e-2}{2}$$

And so the centroid is:

$$\left(\overline{x},\overline{y}\right)=\left(\frac{e^2+1}{4},\frac{e-2}{2}\right)\quad\checkmark$$
 

Attachments

  • karush_15-6-19.png
    karush_15-6-19.png
    11.1 KB · Views: 123
mahalo

Awsome help as usual🏄
 

Attachments

  • karush_15-6-19a.png
    karush_15-6-19a.png
    4.1 KB · Views: 123
karush said:
Find the mass and centroid of the following thin plate assuming constant density
Sketch the region corresponding
to the plate and indicate the location
of the center is the mass
The region bounded by
$$y=ln x$$
$$x-axis$$
$$x=e$$
\begin{align}\displaystyle
\left(\overline{x},\overline{y}\right)
&=\left(\frac{my}{m}\frac{mx}{m}\right)\\
m&=\int_{a}^{b}\int_{a}^{b}xy \, dA\\
Where did "xy" come from? You are told that the density is constant, say C. The mass is $\int\int C dA$

&=\int_{1}^{e}\int_{0}^{\ln{x}}xy \, dydx\\
&=\int_{1}^{e}x\left[\int_{1}^{\ln{x}} y \, dy\right]dx\\
&=\int_{1}^{e}x\left[ \frac{y^2}{2}\right]_0^{\ln{x}} \ dx\\
&=\int_{1}^{e}x\ln{x} \, dx\\
W|A &=\frac{1}{4}\left(1+e^2 \right)
\end{align}
so ?
the centroid is:
$$\left[\frac{e^2+1}{4},\frac{e}{2}-1\right]$$
 
Back
Top