15.6.19 Find the mass and centroid

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Centroid Mass
Click For Summary

Discussion Overview

The discussion revolves around finding the mass and centroid of a thin plate defined by the region bounded by the curve \(y=\ln x\), the x-axis, and the line \(x=e\). Participants explore the mathematical formulation of the problem, including the use of double integrals and integration by parts, while assuming a constant density.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant presents the initial setup for calculating the mass and centroid, using the integral \(m=\int_{1}^{e}\int_{0}^{\ln{x}}xy \, dydx\) and questions the origin of the term \(xy\) in the mass calculation.
  • Another participant suggests using vertical strips to find the area \(A\) with the integral \(A=\int_{1}^{e}\int_{0}^{\ln(x)}\,dy\,dx\) and calculates it using integration by parts, concluding \(A=1\).
  • The same participant derives the centroid coordinates \(\overline{x}\) and \(\overline{y}\) using integration by parts, resulting in \(\overline{x}=\frac{e^2+1}{4}\) and \(\overline{y}=\frac{e-2}{2}\).
  • A later reply expresses gratitude for the assistance provided in the calculations.

Areas of Agreement / Disagreement

There is no consensus on the initial mass calculation, as one participant questions the use of \(xy\) in the mass integral. The discussion includes multiple viewpoints on the approach to finding the centroid and mass, indicating that some aspects remain contested or unclear.

Contextual Notes

Participants express uncertainty regarding the derivation of certain terms in the mass calculation and the implications of constant density on the integration process. The discussion does not resolve these uncertainties.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the mass and centroid of the following thin plate assuming constant density
Sketch the region corresponding
to the plate and indicate the location
of the center is the mass
The region bounded by
$$y=ln x$$
$$x-axis$$
$$x=e$$
\begin{align}\displaystyle
\left(\overline{x},\overline{y}\right)
&=\left(\frac{my}{m}\frac{mx}{m}\right)\\
m&=\int_{a}^{b}\int_{a}^{b}xy \, dA\\
&=\int_{1}^{e}\int_{0}^{\ln{x}}xy \, dydx\\
&=\int_{1}^{e}x\left[\int_{1}^{\ln{x}} y \, dy\right]dx\\
&=\int_{1}^{e}x\left[ \frac{y^2}{2}\right]_0^{\ln{x}} \ dx\\
&=\int_{1}^{e}x\ln{x} \, dx\\
W|A &=\frac{1}{4}\left(1+e^2 \right)
\end{align}
so ?
the centroid is:
$$\left[\frac{e^2+1}{4},\frac{e}{2}-1\right]$$
 
Last edited:
Physics news on Phys.org
Let's begin by sketching the region making up the lamina:

View attachment 7353

Okay, now for some constant mass density $\rho$ over this area $A$, we have by definition:

$$\rho=\frac{m}{A}\implies m=\rho A$$

To find $A$, I presume we are to use a double iterated integral. I would use vertical strips:

$$A=\int_{1}^{e}\int_{0}^{\ln(x)}\,dy\,dx=\int_{1}^{e}\ln(x)\,dx$$

Use IBP, where:

$$u=\ln(x)\implies du=\frac{1}{x}\,dx$$

$$dv=dx\implies v=x$$

Hence:

$$A=\left[x\ln(x)\right]_1^e-\int_1^e\,dx=\left(e-0\right)-(e-1)=1$$

And so we have:

$$m=\rho$$

To find the centroid $\left(\overline{x},\overline{y}\right)$, we use:

$$\overline{x}=\frac{1}{A}\int_1^e x\ln(x)\,dx$$

Use IBP where:

$$u=\ln(x)\implies du=\frac{1}{x}\,dx$$

$$dv=x\,dx\implies v=\frac{1}{2}x^2$$

And so we have (recalling $A=1$):

$$\overline{x}=\left[\frac{1}{2}x^2\ln(x)\right]_1^e-\frac{1}{2}\int_1^e x\,dx=\left(\frac{1}{2}e^2\right)-\left(\frac{1}{4}\left(e^2-1\right)\right)=\frac{e^2+1}{4}$$

Next, we use:

$$\overline{y}=\frac{1}{2}\int_1^e \ln^2(x)\,dx$$

Use IBP, where:

$$u=\ln^2(x)\implies du=\frac{2}{x}\ln(x)\,dx$$

$$dv=dx\implies v=x$$

Thus:

$$\overline{y}=\frac{1}{2}\left(\left[x\ln^2(x)\right]_1^e-2\int_1^e \ln(x)\,dx\right)=\frac{1}{2}\left(e-2\right)=\frac{e-2}{2}$$

And so the centroid is:

$$\left(\overline{x},\overline{y}\right)=\left(\frac{e^2+1}{4},\frac{e-2}{2}\right)\quad\checkmark$$
 

Attachments

  • karush_15-6-19.png
    karush_15-6-19.png
    11.1 KB · Views: 149
mahalo

Awsome help as usual🏄
 

Attachments

  • karush_15-6-19a.png
    karush_15-6-19a.png
    4.1 KB · Views: 149
karush said:
Find the mass and centroid of the following thin plate assuming constant density
Sketch the region corresponding
to the plate and indicate the location
of the center is the mass
The region bounded by
$$y=ln x$$
$$x-axis$$
$$x=e$$
\begin{align}\displaystyle
\left(\overline{x},\overline{y}\right)
&=\left(\frac{my}{m}\frac{mx}{m}\right)\\
m&=\int_{a}^{b}\int_{a}^{b}xy \, dA\\
Where did "xy" come from? You are told that the density is constant, say C. The mass is $\int\int C dA$

&=\int_{1}^{e}\int_{0}^{\ln{x}}xy \, dydx\\
&=\int_{1}^{e}x\left[\int_{1}^{\ln{x}} y \, dy\right]dx\\
&=\int_{1}^{e}x\left[ \frac{y^2}{2}\right]_0^{\ln{x}} \ dx\\
&=\int_{1}^{e}x\ln{x} \, dx\\
W|A &=\frac{1}{4}\left(1+e^2 \right)
\end{align}
so ?
the centroid is:
$$\left[\frac{e^2+1}{4},\frac{e}{2}-1\right]$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K