17.1 Determine if T is a linear transformation

Click For Summary

Discussion Overview

The discussion revolves around determining whether the transformation \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) defined by \( T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x+y \\ x-4y \end{bmatrix} \) is a linear transformation. Participants explore the properties of linear transformations, specifically focusing on the addition property and scalar multiplication.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose checking if \( T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y}) \) holds for the given transformation.
  • There is a discussion about a potential typo in the notation where \( T \) was omitted in front of the vector addition step.
  • One participant suggests that the verification of \( T(c\vec{x}) = cT(\vec{x}) \) is also necessary to confirm linearity.
  • Another participant points out that while the final results may be correct, intermediate steps may contain errors that need clarification.

Areas of Agreement / Disagreement

Participants express uncertainty about the correctness of intermediate steps and whether all necessary properties for linearity have been adequately addressed. There is no consensus on the resolution of these issues.

Contextual Notes

Participants note that some steps in the transformation verification may require further clarification or correction, particularly regarding the notation and intermediate calculations.

Who May Find This Useful

This discussion may be useful for students learning about linear transformations and those seeking to understand the verification process for mathematical properties in linear algebra.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{2000}
17.1 Let $T: \Bbb{R}^2 \to \Bbb{R}^2$ be defined by
$$T \begin{bmatrix}
x\\y
\end{bmatrix}
=
\begin{bmatrix}
2x+y\\x-4y
\end{bmatrix}$$
Determine if $T$ is a linear transformation. So if
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$
Let $\vec{x}$ and $\vec{y}$ be vectors in $\Bbb{R}^2$ then we can write them as
$$\vec{x}
=\begin{bmatrix}
x_1\\x_2
\end{bmatrix}
, \vec{y}
=\begin{bmatrix}
y_1\\y_2
\end{bmatrix}$$
By definition, we have that
$$T(\vec{x}+\vec{y})
=\begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}$$

OK just seeing if this is developing as it should
hopefully the next few steps will be an addition property
and this is a linear transformation
 
Last edited:
Physics news on Phys.org
karush said:
17.1 Let $T: \Bbb{R}^2 \to \Bbb{R}^2$ be defined by
$$T \begin{bmatrix}
x\\y
\end{bmatrix}
=
\begin{bmatrix}
2x+y\\x-4y
\end{bmatrix}$$
Determine if $T$ is a linear transformation. So if
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$
Let $\vec{x}$ and $\vec{y}$ be vectors in $\Bbb{R}^2$ then we can write them as
$$\vec{x}
=\begin{bmatrix}
x_1\\x_2
\end{bmatrix}
, \vec{y}
=\begin{bmatrix}
y_1\\y_2
\end{bmatrix}$$
By definition, we have that
$$T(\vec{x}+\vec{y})
= \begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}$$

OK just seeing if this is developing as it should
hopefully the next few steps will be an addition property
and this is a linear transformation
Typo alert!
[math]T(\vec{x}+\vec{y})
= T \begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}[/math]

Good so far. Now what is T(x) + T(y)? And how do you verify T(cx) = cT(x)?

-Dan
 
ok sorry I got to finish this later
but where is the typo...actually I would say that could be determined just by observation... or not?
 
karush said:
ok sorry I got to finish this later
but where is the typo...actually I would say that could be determined just by observation... or not?
It's a little bit of nothing. You left the T off in front of the [math]\left [ \begin{matrix} x_1 + y_1 \\ x_2 + y_2 \end{matrix} \right ][/math] in the second step of the last equation. (I know there's a way to change the color in LaTeX to highlite it but I'm too lazy to look it up right now.)

-Dan
 
$\displaystyle T(\vec{x}+\vec{y})
= T \begin{bmatrix} x_1+y_1 \\ x_2+y_2 \end{bmatrix}
=T\begin{bmatrix} 2(x_1+y_1)+x_2+y_2\\ x_1+y_1-4(x_2+y_2) \end{bmatrix}$
So then
$T(\vec{x})+T(\vec{y})
= T\begin{bmatrix} x_1\\x_2 \end{bmatrix}
+T\begin{bmatrix} y_1\\y_2 \end{bmatrix}
=\begin{bmatrix} 2(x_1+x_2)\\x_1+x_2\end{bmatrix}+\begin{bmatrix} y_1+y_2\\-4(y_1+y_2 )\end{bmatrix}
=\begin{bmatrix} 2(x_1+y_1)+x_2+y_2\\ x_1+y_1-4(x_2+y_2) \end{bmatrix}$
and
$T(c\vec{x})=\begin{bmatrix}c x_1\\cx_2 \end{bmatrix}
= \begin{bmatrix} cx_1+cy_1 \\ cx_2+cy_2 \end{bmatrix}$
and
$cT(\vec{x})=c\begin{bmatrix} x_1\\x_2 \end{bmatrix}
= c\begin{bmatrix} x_1+y_1 \\ x_2+y_2 \end{bmatrix}
= \begin{bmatrix} cx_1+cy_1 \\ cx_2+cy_2 \end{bmatrix}$ok typos for sure
 
karush said:
$\displaystyle T(\vec{x}+\vec{y})
= T \begin{bmatrix} x_1+y_1 \\ x_2+y_2 \end{bmatrix}
=T\begin{bmatrix} 2(x_1+y_1)+x_2+y_2\\ x_1+y_1-4(x_2+y_2) \end{bmatrix}$
Only one typo: Top line of equations, third term doesn't need the T. You've already taken the transform.

The second line of equations needs some work. You have the correct answer, but the intermediate step is wrong. Is this also a typo?

It should be
[math]T \left [ \begin{matrix} x_1 \\ x_2 \end{matrix} \right ] + T \left [ \begin{matrix} y_1 \\ y_2 \end{matrix} \right ] = \left [ \begin{matrix} 2x_1 + x_2 \\ x_1 - 4x_2 \end{matrix} \right ] + \left [ \begin{matrix} 2y_1 + y_2 \\ y_1 - 4y_2 \end{matrix} \right ] = \left [ \begin{matrix} 2(x_1 + y_1) + (x_2 + y_2) \\ (x_1 + y_1) - 4(x_2 + y_2) \end{matrix} \right ] [/math]

-Dan
 
ok really appreciate the help.

I still need more practice on these...

sorry for the wait on reply but I am limited to when the computer labs are open.

Mahalo...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K