1D collision, varying masses but same initial velocity

Click For Summary
SUMMARY

The discussion centers on solving a one-dimensional collision problem involving two masses (2m and m) with the same initial velocity (v). Participants emphasize the importance of applying the conservation of momentum and kinetic energy equations correctly. Key equations derived include the momentum conservation equation 3mv = 2m(vf1) + m(vf2) and the kinetic energy conservation equation (3/2)v^2 = (vf1)^2 + (1/2)(vf2)^2. The conversation highlights common pitfalls, such as miscalculating terms and the need for careful algebraic manipulation to solve for final velocities (vf1 and vf2).

PREREQUISITES
  • Understanding of conservation of momentum in collisions
  • Knowledge of kinetic energy equations
  • Ability to solve systems of equations
  • Familiarity with quadratic equations
NEXT STEPS
  • Review the principles of conservation of momentum and kinetic energy in collisions
  • Practice solving systems of equations involving multiple variables
  • Learn how to apply the quadratic formula to find roots of equations
  • Explore examples of one-dimensional elastic and inelastic collisions
USEFUL FOR

Students studying physics, educators teaching mechanics, and anyone interested in understanding collision dynamics and problem-solving in classical mechanics.

mncyapntsi
Messages
38
Reaction score
4
Homework Statement
Trying to solve this problem to study for an exam next week!

There are two masses : 2m and m and they collide with v and -v. I need to find the final velocities (it is also a perfectly elastic collision).
Relevant Equations
KEi = KEf gives (1/2)(m1)(vi1)^2 + (1/2)(m2)(vi2)^2 = (1/2)(m1)(vf1)^2 + (1/2)(m2)(vf2)^2
pi = pf gives (m1)(vi1) + (m2)(vi2) = (m1)(vf1) + (m2)(vf2)
m1 = 2m
m2 = m
I know I need to look at the conversation of momentum, as well as the conservation of kinetic energy. However I get stuck with my equations. Any help would be greatly appreciated! I've already got (don't know where I am going wrong):

(v)^2 + (1/2)(m)(v)^2 = (vf1)^2 + (1/2)(m)(vf2)^2
(3/2)v^2 = (vf1)^2 + (1/2)(vf2)^2

3mv = 2m(vf1) + m(vf2)
3v = (vf1) + (vf2)
(vf1) = 3v - vf2

Plugging into KE conservation equation gives me:
(3/2)v^2 = (3v - vf2)^2 + (1/2)(vf2)^2
(3/2)v^2 = 9v^2 -6v(vf2) + (vf2)^2 + (1/2)(vf2)^2
- 6v (vf2) = (7.5)v^2 + (3/2)(vf2)^2

And this is where I get stuck – I indeed have two variables, however since there is a v multiplied by vf2 I don't know how to continue. I can't spot my error anywhere... Would anyone have any advice? Thank you!
 
Physics news on Phys.org
mncyapntsi said:
3mv = 2m(vf1) + m(vf2)
How do you figure 3mv on the left? Read the problem. What are the initial velocities? The energy conservation equation and the momentum conservation equation should give you a system of two equations and two unknowns. Look at this

3mv = 2m(vf1) + m(vf2)
3v = (vf1) + (vf2)

I can see canceling the masses, but what happened to the factor of 2 in the top equation? If you don't make any careless mistakes like this, the solution should come out.
 
  • Like
Likes   Reactions: mncyapntsi and topsquark
kuruman said:
How do you figure 3mv on the left? Read the problem. What are the initial velocities? The energy conservation equation and the momentum conservation equation should give you a system of two equations and two unknowns. Look at this

3mv = 2m(vf1) + m(vf2)
3v = (vf1) + (vf2)

I can see canceling the masses, but what happened to the factor of 2 in the top equation? If you don't make any careless mistakes like this, the solution should come out.
Thanks for catching that! So with that fixed I've got:

(v)^2 + (1/2)(m)(v)^2 = (vf1)^2 + (1/2)(m)(vf2)^2
(3/2)v^2 = (vf1)^2 + (1/2)(vf2)^2

3mv = 2m(vf1) + m(vf2)
3v = 2(vf1) + (vf2)
vf2 = 3v - 2(vf1)

Plugging into KE conservation equation gives me:
(3/2)v^2 = (vf1)^2 + (1/2)(3v - 2(vf1))^2
(3/2)v^2 = (vf1)^2 + (1/2)(9v^2 - 12v(vf1) + 4(vf1))
(3/2)v^2 = (vf1)^2 + (9/2)v^2 - 6v(vf1) + 2(vf1)
-6v(vf1) = (6/2)v^2 + (vf1)^2 + 2(vf1)

And this is a similar kind of problem as before... Is there some other mistake? I have factors of v(vf1), v^2, vf1^2, AND vf1 which doesn't seem right...
Thanks again!
 
Focus on the first comment of kuruman.
 
  • Like
Likes   Reactions: topsquark and mncyapntsi
Frabjous said:
Focus on the first comment of kuruman.
Ah yep! forgot about that:
I assumed that the initial momentum was 3mv because the momentum of the 2m mass is 2mv and the momentum of the m mass is mv, so the total initial momentum would be 2mv+mv = 3mv. Where am I going wrong?
Thanks!
 
Velocity is a vector so it has a direction.
 
  • Like
Likes   Reactions: topsquark and mncyapntsi
mncyapntsi said:
##\dots## so the total initial momentum would be 2mv+mv = 3mv. Where am I going wrong?
mncyapntsi said:
There are two masses : 2m and m and they collide with v and -v.
And 2mv + m(-v) = 3mv, right?
 
  • Like
Likes   Reactions: topsquark and mncyapntsi
Frabjous said:
Velocity is a vector so it has a direction.
Ah! That's it...

(v)^2 + (1/2)(m)(v)^2 = (vf1)^2 + (1/2)(m)(vf2)^2
(3/2)v^2 = (vf1)^2 + (1/2)(vf2)^2

mv = 2m(vf1) + m(vf2)
v = 2(vf1) + (vf2)

Plugging into KE conservation equation gives me:
(3/2)v^2 = (vf1)^2 + (1/2)(vf2))^2
(3/2)(2(vf1) + (vf2))^2 = (vf1)^2 + (1/2)(vf2))^2
(3/2)(4(vf1)^2 + 8(vf1)(vf2) + (vf2)^2) = (vf1)^2 + (1/2)(vf2))^2
6(vf1)^2 + 12(vf1)(vf2) + (3/2)(vf2)^2 = (vf1)^2 + (1/2)(vf2))^2
5(vf1)^2 + 12(vf1)(vf2) = - (vf2))^2

I am so sorry – I run into the same problem... What am I doing wrong now ://
 
You know v so you do not want to substitute for it.
 
  • Like
Likes   Reactions: topsquark and mncyapntsi
  • #10
Yes, your goal is to find vf1 and vf2 in terms of v.
 
  • Like
Likes   Reactions: mncyapntsi
  • #11
Frabjous said:
You know v so you do not want to substitute for it.
Oh my goodness - I think I overthought this problem and lost track of what I was effectively doing. Thank you for your patience and help! So if I substitute for vf2 instead...

(v)^2 + (1/2)(m)(v)^2 = (vf1)^2 + (1/2)(m)(vf2)^2
(3/2)v^2 = (vf1)^2 + (1/2)(vf2)^2

mv = 2m(vf1) + m(vf2)
v = 2(vf1) + (vf2)
(vf2) = v - 2(vf1)

Plugging into KE conservation equation gives me:
(3/2)v^2 = (vf1)^2 + (1/2)(v - 2(vf1)))^2
(3/2)v^2 = (vf1)^2 + (1/2)(v^2 - 4v(vf1) + 4(vf1)^2)
(3/2)v^2 = (vf1)^2 + (1/2)(v^2) - 2v(vf1) + 2(vf1)^2
v^2 = - 2v(vf1) + 3(vf1)^2
v^2 + 2v(vf1) = 3(vf1)^2
From here, how would I find vf1?
Sorry!
 
  • #12
Quadratic equation.
 
  • Like
Likes   Reactions: topsquark and mncyapntsi
  • #13
your first equation is wrong. You are adding squared velocity term to kinetic energy term! ##v^2 + \frac 1 2 mv^2##
 
  • Like
Likes   Reactions: mncyapntsi
  • #14
Henryk said:
your first equation is wrong. You are adding squared velocity term to kinetic energy term! ##v^2 + \frac 1 2 mv^2##
Oh that's a typo (sorry I don't know proper Latex yet), I meant to cancel all the m's, but did so in the next step:
(v)^2 + (1/2)(v)^2 = (vf1)^2 + (1/2)(vf2)^2
(3/2)v^2 = (vf1)^2 + (1/2)(vf2)^2
 
  • #15
Frabjous said:
Quadratic equation.
Right!
When I do that I get either (v1f) = v, or (v1f) = -(1/3)v. Does that second result sound reasonable?
 
  • #16
mncyapntsi said:
Right!
When I do that I get either (v1f) = v, or (v1f) = -(1/3)v. Does that second result sound reasonable?
It sounds reasonable, but only one of the two is the answer to this question for v1f. Which one and why? Also, you still have to find v2f.
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 14 ·
Replies
14
Views
11K
  • · Replies 1 ·
Replies
1
Views
18K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
20
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K