1D Quantum Well - Different width "naming" gives different result ?

Click For Summary
SUMMARY

The discussion centers on the differences in wavefunction results for a one-dimensional quantum well based on the chosen coordinate system. Two cases are analyzed: one from -L/2 to L/2 and another from 0 to L. The wavefunctions derived from the Schrödinger equation yield different forms, with the first case resulting in an imaginary wavefunction due to the presence of the complex factor 'i'. Despite this, normalization ensures that both cases yield equivalent observational probabilities.

PREREQUISITES
  • Understanding of the Schrödinger equation in quantum mechanics
  • Familiarity with boundary conditions in quantum systems
  • Knowledge of wavefunction normalization techniques
  • Concept of eigenfunctions in quantum mechanics
NEXT STEPS
  • Explore the implications of complex wavefunctions in quantum mechanics
  • Study normalization methods for quantum wavefunctions
  • Learn about the physical significance of eigenfunctions and eigenvalues
  • Investigate the effects of different boundary conditions on quantum systems
USEFUL FOR

Quantum physicists, students studying quantum mechanics, and researchers interested in wavefunction behavior in quantum wells.

Solmyros
Messages
21
Reaction score
0
TL;DR
Boundary conditions give different result depending on whether the quantum well is defined from 0 to L or from -L/2 to +L/2.
Greetings everyone,

Exactly as the title says. I am reaching to something strange and I do not know what I am missing. It must be something obvious...

case 1: -L/2 to L/2

After taking the Schrödinger equation and considering potential equal to zero inside we reach at this: $$Ψ=A×e^{ikz}+B×e^{- ikz}$$
case 1.png

Boundary conditions
Outside the well the potential is assumed infinite, so the wavefunction is equal to zero:
  • $$\Psi = 0, when \left|{z}\right|>\frac{L}{2}$$
  • $$Ψ(−\frac{L}{2})=0 \ (1)$$
  • $$Ψ(+\frac{L}{2})=0 \ (2)$$
From 1. we have : $$B=−A×e^{−ikL} \ (3)$$

Substituting (3) in 2. we get: $$k=\frac{n \times \pi}{L}, where \ n=0,1,2,... (4)$$

Therefore from (3) we get: $$B=−A \times e^{−inπ}$$

And finally, if $$n=2m, where \ m=0,1,2,...$$ we get from the original Schrödinger Equation: $$\Psi_{even}(z) = A \times ( e^{i k z} - e^{- i k z)} = 2 i A \sin{(kz)} \ (5)$$

case 2: 0 to L

After taking the Schrödinger equation and considering potential equal to zero inside we reach at this: $$Ψ=A'×e^{ikz}+B'×e^{- ikz}$$

case 2.png


Boundary conditions
Outside the well the potential is assumed infinite, so the wavefunction is equal to zero:
  • $$\Psi = 0, \ when \ z \le 0 \ or \ z \ge L$$
  • $$Ψ(0)=0 \ (6)$$
  • $$Ψ(L)=0 \ (7)$$
From 1. we have : $$B'=−A'$$ (8)
So, we get from the original Schrödinger Equation: $$\Psi(z) = A' \times ( e^{i k z} - e^{- i k z)} = A' \sin{kz} \ (9)$$

and

$$Ψ(L)=0 = A' \sin{kL} \ which \ gives \ k=\frac{n \times \pi}{L} \ (10), where \ n=0,1,2,... (\ like \ before)$$

But, now if $$n=2m, where \ m=0,1,2,...$$ we get $$\Psi_{even}(z) = A' \sin({\frac {2m \pi }{L}z}) \ (11)$$

Normalization will eventually give the same amplitude, BUT, on the first case the wavefunction is imaginary. This added 'i' is what buffles me.

Thank you in advance for your help.
 

Attachments

  • case 1.png
    case 1.png
    6.6 KB · Views: 189
Physics news on Phys.org
The basis eigenfunctions have an arbitrary complex factor of modulus ##1##. You can take this to be ##1## or ##i## or any other unit complex number.
 
  • Like
  • Informative
Likes   Reactions: Solmyros and DrClaude
Wave functions with differing coefficients, real or complex of any magnitude, represent the same wave function. Normalization is required if observational probabilities are desired. Normalization makes them equal.
 
  • Informative
Likes   Reactions: Solmyros

Similar threads

  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K