2 masses connected by spring, one is pulled, how much does the spring stretch?

AI Thread Summary
The discussion revolves around a physics problem involving two masses connected by a spring, where one mass is pulled. The initial approach involves using the net force equations for both masses, but the poster expresses uncertainty about the solution. A suggestion is made to simplify the problem by assuming one mass is significantly larger than the other, which can help clarify the calculations. The conversation highlights the importance of analyzing limiting cases to understand the behavior of the system. Ultimately, the focus remains on finding the correct method to determine how much the spring stretches.
Obliv
Messages
52
Reaction score
1
Homework Statement
The masses are connected by a massless spring on a frictionless surface. One of the masses is pulled by a force F, how much does the spring stretch if at all?
Relevant Equations
F = ma, F = -kx
View attachment 332091
Hi, I am having trouble with this problem. I'm thinking the solution is this but I'm not sure. Fnet=m1a+m2aFnet=m1a+m2a , m1a=kxm1a=kx, m2a=Fkxm2a=F−kx so x=m1ak=−(m2aF)kx=m1ak=−(m2a−F)k
 
Physics news on Phys.org
nvm
 
So what answer did you finally get? Does it reduce to what you would expect in the limiting cases ##m_1<<m_2## and ##m_1>>m_2##?
 
  • Like
Likes MatinSAR and PeroK
... I suggest first assuming that ##m_1## is so large that it doesn't move. That gives you an easier problem to get you started.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top