2 masses connected by spring, one is pulled, how much does the spring stretch?

AI Thread Summary
The discussion revolves around a physics problem involving two masses connected by a spring, where one mass is pulled. The initial approach involves using the net force equations for both masses, but the poster expresses uncertainty about the solution. A suggestion is made to simplify the problem by assuming one mass is significantly larger than the other, which can help clarify the calculations. The conversation highlights the importance of analyzing limiting cases to understand the behavior of the system. Ultimately, the focus remains on finding the correct method to determine how much the spring stretches.
Obliv
Messages
52
Reaction score
1
Homework Statement
The masses are connected by a massless spring on a frictionless surface. One of the masses is pulled by a force F, how much does the spring stretch if at all?
Relevant Equations
F = ma, F = -kx
View attachment 332091
Hi, I am having trouble with this problem. I'm thinking the solution is this but I'm not sure. Fnet=m1a+m2aFnet=m1a+m2a , m1a=kxm1a=kx, m2a=Fkxm2a=F−kx so x=m1ak=−(m2aF)kx=m1ak=−(m2a−F)k
 
Physics news on Phys.org
nvm
 
So what answer did you finally get? Does it reduce to what you would expect in the limiting cases ##m_1<<m_2## and ##m_1>>m_2##?
 
  • Like
Likes MatinSAR and PeroK
... I suggest first assuming that ##m_1## is so large that it doesn't move. That gives you an easier problem to get you started.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top