206.5.64 integral by partial fractions

Click For Summary
SUMMARY

The integral of the function \( \frac{9x^3-6x+4}{x^3-x^2} \) is computed using partial fractions. The expression simplifies to \( 9 + \frac{9x^2+6x+4}{x^2(x-1)} \), which can be decomposed into \( \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} \). The final result of the integral is \( 2\ln(|x|) + 9x + \frac{4}{x} + 7\ln(|x-1|) + C \), where \( C \) is the constant of integration. The method involves equating coefficients to solve for \( A \), \( B \), and \( C \).

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with partial fraction decomposition
  • Knowledge of logarithmic functions
  • Ability to solve systems of equations
NEXT STEPS
  • Study the method of partial fraction decomposition in detail
  • Learn how to integrate rational functions using partial fractions
  • Explore the properties of logarithmic integrals
  • Practice solving systems of equations for coefficient determination
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to enhance their skills in solving integrals involving rational functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textbf{206.5.64 integral by partial fractions} \\
\displaystyle
I_{64}=
\int\frac{9x^3-6x+4}{x^3-x^2} \, dx \\
\text{expand} \\
\displaystyle
\frac{9x^3-6x+4}{x^3-x^2}
= \frac{9(x^3-x^2)+9x^2+6x+4}{x^3-x^2}
= 9 + \frac{9x^2+6x+4}{x^2(x-1)} \\
\textbf{stuck!}$
 
Physics news on Phys.org
The next step would be:

$$\frac{9x^2+6x+4}{x^2(x-1)}=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x-1}$$
 
$\textbf{206.5.64 integral by partial fractions} \\
\displaystyle
I_{64}=
\int\frac{9x^3-6x+4}{x^3-x^2} \, dx =
2\ln\left(\left|x\right|\right)+9x+\dfrac{4}{x}+7\ln\left(\left|x-1\right|\right)\\
\textbf{expand} \\
\displaystyle
\frac{9x^3-6x+4}{x^3-x^2}
= \frac{9(x^3-x^2)+9x^2+6x+4}{x^3-x^2}
= 9 + \frac{9x^2+6x+4}{x^2(x-1)} \\
\textbf{sidework}\\
\displaystyle
\frac{9x^2+6x+4}{x^2(x-1)}
\displaystyle
=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x-1}\\
\displaystyle 9x^2+6x+4=Ax(x-1)+B(x-1)+Cx^2=(A+C)x^2+(B-A)x+(-B) \\
4=(A+C-9)x^2+(B-A-6)x-B
$
 
Last edited:
We have;

$$\frac{9x^2+6x+4}{x^2(x-1)}=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x-1}$$

The next step is to multiply through by $x^2(x-1)$ to get:

$$9x^2+6x+4=Ax(x-1)+B(x-1)+Cx^2=(A+C)x^2+(B-A)x+(-B)$$

Now, equate coefficients and solve the resulting system. :D
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K