232.15.1.33 Evaluate the Area of the Region

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Area
Click For Summary

Discussion Overview

The discussion revolves around evaluating the area of a region defined by the function \( f(x,y) = 3e^{-y} \) over a specified rectangular region \( R \). Participants explore the setup of the double integral and the implications of changing the order of integration, as well as the distinction between finding the area of the region and integrating the function over that region.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant sets up the double integral for the function \( f(x,y) \) over the region \( R \) and questions if the setup is correct.
  • Another participant suggests that the integral limits are incorrect, emphasizing that the inner integral should be with respect to \( x \).
  • A participant proposes switching the order of integration from \( dx \, dy \) to \( dy \, dx \) and discusses the implications of the rectangular region on this switch.
  • Further elaboration is provided on the necessity of careful consideration when changing the order of integration, particularly in non-rectangular regions.
  • Several participants calculate the integral and arrive at the result of 18, but there is uncertainty expressed about the wording of the original problem and whether the goal was to find the area of the region or to integrate the function over it.
  • One participant clarifies that the area of the rectangular region is \( 8 \ln(4) \) and discusses the integral of \( f(x,y) \) over the region, providing alternative methods to compute it.
  • Another participant suggests checking the answer using Wolfram|Alpha, indicating a desire for verification of the computed result.

Areas of Agreement / Disagreement

Participants express differing views on the interpretation of the problem, with some focusing on the area of the region and others on the integral of the function. There is no consensus on the wording of the problem or the correct approach to take.

Contextual Notes

There are unresolved questions regarding the assumptions made about the problem's wording and the implications of integrating a function versus finding the area of the region itself.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{232.15.1.33}\\$
Evaluate the Area of the Region
$$f(x,y)=3e^{-y};
R=\biggr[(x,y):0 \le x \le 8, 0 \le y \le \ln 4\biggr]$$
\begin{align*}\displaystyle
I&=\iint\limits_{R} f(x,y) \quad dx \, dy \\
&=\int_{0}^{8}\int_{0}^{\ln 4} 3e^{-y} \quad dx \, dy \\
\end{align*}

ok just seeing if this is setup ok before proceed.
since there is no x in this
:cool:
 
Last edited:
Physics news on Phys.org
Re: 232.15.1.33 Evaluate the Region

I think your integral limits are off. The inner integral is with respect to $x$.
 
Re: 232.15.1.33 Evaluate the Region

Ackbach said:
I think your integral limits are off. The inner integral is with respect to $x$.
ok so I guess we can just switch x to y like thus:
\begin{align*}\displaystyle
&=\int_{0}^{8}\int_{0}^{\ln 4} 3e^{-y} \quad dy \, dx \\
\end{align*}
 
Re: 232.15.1.33 Evaluate the Region

karush said:
ok so I guess we can just switch $x$ to $y$ like thus:
\begin{align*}
&=\int_{0}^{8}\int_{0}^{\ln 4} 3e^{-y} \, dy \, dx \\
\end{align*}

Yes, but only because your region is rectangular, and $y$ and $x$ are independent on the boundary of your region. If you had, say, a triangular region, you'd have to think carefully about it. For example, suppose you had
$$\int_0^1 \int_0^x f(x,y) \, dy \, dx.$$
You can draw this triangular region out - it's a right triangle with vertices at $(0,0), \; (1,0),\; (0,1)$. Now suppose you wanted to interchange the order of integration. How would you do that? Like this:
$$\int_0^1 \int_y^1 f(x,y) \, dx \, dy.$$
Well, that doesn't look anything like the previous one! Why is that? Because the inner integral has to be viewed as going between two functions as limits, not two numbers.

Does that help?
 
\begin{align*}\displaystyle
I&=\iint\limits_{R} f(x,y) \quad dx \, dy \\
&=\int_{0}^{8}\int_{0}^{\ln 4}
3e^{-y}
\quad dx \, dy \\
&=\int_{0}^{8}\biggr[-3e^{-y}\biggr]_0^{\ln{ 4}}\quad dy=\int_{0}^{8}\frac{9}{4}\quad dy\\
&=9\biggr[\frac{y}{4}\biggr]_0^8=9\cdot (2-0)\\
&=\color{red}{\large{18}}
\end{align*}hopefully
any suggest
 
karush said:
\begin{align*}\displaystyle
I&=\iint\limits_{R} f(x,y) \quad dx \, dy \\
&=\int_{0}^{8}\int_{0}^{\ln 4}
3e^{-y}
\quad dx \, dy \\
&=\int_{0}^{8}\biggr[-3e^{-y}\biggr]_0^{\ln{ 4}}\quad dy=\int_{0}^{8}\frac{9}{4}\quad dy\\
&=9\biggr[\frac{y}{4}\biggr]_0^8=9\cdot (2-0)\\
&=\color{red}{\large{18}}
\end{align*}hopefully
any suggest

Check your answer on Wolfram|Alpha or Wolfram Development Platform with this command:

Code:
Integrate[Integrate[3*Exp[-y],{x,0,Log[4]}],{y,0,8}]
 
What, exactly, was the wording of the problem?

You titled this, and the first line of your post is "Find the area of the region" but then introduce a function f(x, y). Is the problem to find the area or is it to integrate $f(x, y)= 3e^{-y}$ over that region?

The region is given as the set of all (x, y) such that $0\le x\le 8$ and $0\le y\le ln(4)$.

That region is a rectangle. The area of that rectangle is, of course, 8ln(4).

The integral of f(x,y) over that region can be done as
$\int_0^8 \int_0^{ln(4)} 3e^{-y} dy dx$ or

$\int_0^{ln(4)}\int_0^8 3e^{-y} dx dy$ or

$\left(\int_0^8 dx\right)\left(\int_0^{ln(4)} 3e^{-y}dy\right)$.

If you were concerned, in doing $\int_0^{ln(4)}\int_0^8 3e^{-y} dxdy$ that
"there is no x in that", you treat it as the integral of a constant.
$\int_0^8 3e^{-y} dx= 3e^{-y}\left[x\right]_0^8= 8(3e^{-y})$.
Then $\int_0^{ln(4)} 8(3e^{-y}) dy= 24 \int_0^{ln(4)} e^{-y} dy= 24\left[-e^{-y}\right]_0^{ln(4)}= 24(-e^{-ln(4)}+ e^0)= 24(1- \frac{1}{4}= 24(\frac{3}{4})= 18$ as you got.
 
Last edited:
Ackbach said:
Check your answer on Wolfram|Alpha or Wolfram Development Platform with this command:

Code:
Integrate[Integrate[3*Exp[-y],{x,0,Log[4]}],{y,0,8}]

ok well I already had it in latex...
well how come its not 18

View attachment 7913
 

Attachments

  • Capture.PNG
    Capture.PNG
    4.7 KB · Views: 134

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K