MHB 241.19 the e d definition of a limit.

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Definition Limit
Click For Summary
The discussion centers on proving the limit statement using the ε-δ definition of a limit, specifically that lim as x approaches 1 of (2 + 4x)/3 equals 2. The proof begins by establishing the conditions 0 < |x - 1| < δ and |(2 + 4x)/3 - 2| < ε. The calculations show that |(2 + 4x)/3 - 2| simplifies to (4/3)|x - 1|, which leads to the conclusion that if δ is chosen as (3/4)ε, the limit condition holds. The final statement emphasizes the need for clear wording in the proof to ensure understanding. The discussion highlights the importance of precise definitions and calculations in limit proofs.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
prove the statement using the $\epsilon,\delta$ definition of a limit.
$$\lim_{{x}\to{1}}\frac{2+4x}{3}=2$$
so then
$$x_0=1\quad f(x)=\frac{2+4x}{3}\quad L=2$$
now
$$0<|x-1|<\delta\quad\text
{and}\quad\left|\frac{2+4x}{3}-2\right|
<\epsilon$$
then
$$\left|\frac{2+4x}{3}-\frac{6}{3}\right|=\left|\frac{4x-4}{3}\right|$$
$$=\frac{4}{3}|x-1|=|x-1|<\frac{3}{4}\epsilon$$
finally
$$\left|\frac{2+4x}{3}-2\right|
=\frac{4}{3}|x-1|<\frac{4}{3}\delta
=\frac{4}{3}\left(\frac{3}{4}\epsilon\right)
=\epsilon.$$
 
Last edited:
Physics news on Phys.org
karush said:
prove the statement using the $\epsilon,\delta$ definition of a limit.
$$\lim_{{x}\to{1}}\frac{2+4x}{3}=2$$
so then
$$x_0=1\quad f(x)=\frac{2+4x}{3}\quad L=2$$
now
$$0<|x-1|<\delta\quad\text
{and}\quad\left|\frac{2+4x}{3}-2\right|
<\epsilon$$
That last statement should read
Given $\epsilon>0$, we need to find $\delta>0$ such that $\left|\dfrac{2+4x}{3}-2\right| <\epsilon$ whenever $0<|x-1|<\delta$.​
karush said:
then
$$\left|\frac{2+4x}{3}-\frac{6}{3}\right|=\left|\frac{4x-4}{3}\right|$$
$$=\frac{4}{3}|x-1|$$
That calculation should then continue $$\left|\frac{2+4x}{3}-\frac{6}{3}\right|=\left|\frac{4x-4}{3}\right|$$
$$=\frac{4}{3}|x-1| < \frac43\delta.$$ In order for that to be less than $\epsilon$, we can take $\delta = \dfrac34\epsilon.$

So your solution is essentially correct, but the wording needs to be clarified.