241.19 the e d definition of a limit.

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Definition Limit
Click For Summary
SUMMARY

The discussion focuses on proving the limit statement using the $\epsilon,\delta$ definition of a limit for the function \( f(x) = \frac{2+4x}{3} \) as \( x \) approaches 1, concluding that \( \lim_{{x}\to{1}} f(x) = 2 \). The proof establishes that for any \( \epsilon > 0 \), there exists a \( \delta > 0 \) such that \( \left|\frac{2+4x}{3}-2\right| < \epsilon \) whenever \( 0 < |x-1| < \delta \). The calculation shows that \( \left|\frac{2+4x}{3}-2\right| = \frac{4}{3}|x-1| < \epsilon \) can be satisfied by choosing \( \delta = \frac{3}{4}\epsilon \). The discussion emphasizes the need for clarity in wording while maintaining the correctness of the mathematical proof.

PREREQUISITES
  • Understanding of the $\epsilon,\delta$ definition of a limit
  • Familiarity with limit notation and concepts in calculus
  • Basic algebraic manipulation skills
  • Knowledge of functions and their limits
NEXT STEPS
  • Study the $\epsilon,\delta$ definition of limits in detail
  • Practice proving limits for various functions using the $\epsilon,\delta$ method
  • Explore the implications of limits in calculus, such as continuity and differentiability
  • Review common pitfalls in limit proofs and how to avoid them
USEFUL FOR

Students of calculus, mathematics educators, and anyone seeking to deepen their understanding of limit proofs using the $\epsilon,\delta$ framework.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
prove the statement using the $\epsilon,\delta$ definition of a limit.
$$\lim_{{x}\to{1}}\frac{2+4x}{3}=2$$
so then
$$x_0=1\quad f(x)=\frac{2+4x}{3}\quad L=2$$
now
$$0<|x-1|<\delta\quad\text
{and}\quad\left|\frac{2+4x}{3}-2\right|
<\epsilon$$
then
$$\left|\frac{2+4x}{3}-\frac{6}{3}\right|=\left|\frac{4x-4}{3}\right|$$
$$=\frac{4}{3}|x-1|=|x-1|<\frac{3}{4}\epsilon$$
finally
$$\left|\frac{2+4x}{3}-2\right|
=\frac{4}{3}|x-1|<\frac{4}{3}\delta
=\frac{4}{3}\left(\frac{3}{4}\epsilon\right)
=\epsilon.$$
 
Last edited:
Physics news on Phys.org
karush said:
prove the statement using the $\epsilon,\delta$ definition of a limit.
$$\lim_{{x}\to{1}}\frac{2+4x}{3}=2$$
so then
$$x_0=1\quad f(x)=\frac{2+4x}{3}\quad L=2$$
now
$$0<|x-1|<\delta\quad\text
{and}\quad\left|\frac{2+4x}{3}-2\right|
<\epsilon$$
That last statement should read
Given $\epsilon>0$, we need to find $\delta>0$ such that $\left|\dfrac{2+4x}{3}-2\right| <\epsilon$ whenever $0<|x-1|<\delta$.​
karush said:
then
$$\left|\frac{2+4x}{3}-\frac{6}{3}\right|=\left|\frac{4x-4}{3}\right|$$
$$=\frac{4}{3}|x-1|$$
That calculation should then continue $$\left|\frac{2+4x}{3}-\frac{6}{3}\right|=\left|\frac{4x-4}{3}\right|$$
$$=\frac{4}{3}|x-1| < \frac43\delta.$$ In order for that to be less than $\epsilon$, we can take $\delta = \dfrac34\epsilon.$

So your solution is essentially correct, but the wording needs to be clarified.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K