MHB *3 coordinates of parallelogram STUV

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 1233

(a) $\vec{ST} = \pmatrix{9 \\ 9}$
so $V=(5,15)-(9,9)=(-4,6)$

(b) $UV = \pmatrix{-4,6}-\lambda \pmatrix{9,9}$

(c) eq of line $UV$ is $y=x+10$ so from position vector
$\pmatrix{1 \\11}$ we have $11=1+10$

didn't know how to find the value of $\lambda$

(d) ?
 
Mathematics news on Phys.org
You have \displaystyle \begin{align*} x = -4 - 9\lambda \end{align*} and \displaystyle \begin{align*} y = 6 - 9\lambda \end{align*}, so surely if you have the point \displaystyle \begin{align*} (x, y) = (1, 11) \end{align*} you can find \displaystyle \begin{align*} \lambda \end{align*}...
 
For d) i), you can easily apply the distance formula in elementary geometry. You should get
$$\sqrt{(a-1)^2+(17-11)^2}=2\sqrt{13}$$
From that point it's just algebra.
For ii), use this formula involving vector dot products:
$$\theta_{ab}=\arccos\frac{a\cdot b}{\mid \mid a\mid \mid \mid \mid b\mid \mid }$$

(Bandit)
 
Last edited:
Hello, karush!

\text{20. Three of the coordinates of parallelogram }STUV
. . . .\text{are: }\:S(\text{-}2,\text{-}2),\:T(7,7),\:U(5,15)

\text{(a) Find the vector }\vec{ST}\text{ and hence the coordinates of }V.
The sketch locates point V.
Code:
                  |       (5,15)
                  |       U o
                  |       .   *
                  |     .       * (7.7)
                  |   .           o T
                  | .           * :
                  .           *   :
                . |         *     :
              .   |       *       :
            .     |     *         :-9
          .       |   *           :
      V o         | *             :
    ------.-------*---------------:----
            .   * |               :
            S o - | - - - - - - - *
           (-2,-2)|    -9
Going from T to S, we move down 9 and left 9.

Doing the same from U we arrive at V(-4,6).
 
soroban said:
Hello, karush!


The sketch locates point V.
Code:
                  |       (5,15)
                  |       U o
                  |       .   *
                  |     .       * (7.7)
                  |   .           o T
                  | .           * :
                  .           *   :
                . |         *     :
              .   |       *       :
            .     |     *         :-9
          .       |   *           :
      V o         | *             :
    ------.-------*---------------:----
            .   * |               :
            S o - | - - - - - - - *
           (-2,-2)|    -9
Going from T to S, we move down 9 and left 9.

Doing the same from U we arrive at V(-4,6).

As impressive as your coding skills are, I have to ask, didn't the OP already do all of this?
 
Prove It said:
You have \displaystyle \begin{align*} x = -4 - 9\lambda \end{align*} and \displaystyle \begin{align*} y = 6 - 9\lambda \end{align*}, so surely if you have the point \displaystyle \begin{align*} (x, y) = (1, 11) \end{align*} you can find \displaystyle \begin{align*} \lambda \end{align*}...

OK from this I get $$\lambda = -\frac{5}{9}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top