MHB 3 newspapers- a question about Inclusion–exclusion principle

  • Thread starter Thread starter lola19991
  • Start date Start date
  • Tags Tags
    Principle
Click For Summary
In a city of 100,000 people with three newspapers—A, B, and C—10% read A, 30% read B, and 5% read C. The discussion revolves around calculating readership using the inclusion-exclusion principle. The first two parts were solved, revealing that 20,000 people read only one newspaper and 12,000 read at least two. For part (c), the focus is on those who read at least one morning newspaper (A or C) and one evening newspaper (B), which involves combining the relevant percentages. The calculations for parts (c) and (d) are connected, as part (d) is a subset of the results from part (c).
lola19991
Messages
6
Reaction score
0
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.
 
Physics news on Phys.org
lola19991 said:
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.

Hey Lola! (Wave)

Can you clarify what '10% read A' means exactly?
Does it mean that '10% read at least A'? Or '10% read only A'?

Anyway, for (c) we want to know:
$$\#(\text{at least 1 morning paper} \land \text{at least 1 evening paper})
=\#\Big((A \cup C) \cap B\Big)
$$
Do you know how to calculate that (and what it means)?
Typically we draw a so called Venn Diagram to figure out something like that. (Thinking)
 
lola19991 said:
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.

How did you solve the first two?
Why is Part c any different? (A or C) and B
Why is Part d any different? Subset of the answer to Part c?

Translation Hint:
How MANY people? People are countable.
How MUCH sugar? Sugar is in countable, but it is measurable.
How MANY frogs? Countable.
How MUCH air? Measurable.
 
I like Serena said:
Hey Lola! (Wave)

Can you clarify what '10% read A' means exactly?
Does it mean that '10% read at least A'? Or '10% read only A'?

Anyway, for (c) we want to know:
$$\#(\text{at least 1 morning paper} \land \text{at least 1 evening paper})
=\#\Big((A \cup C) \cap B\Big)
$$
Do you know how to calculate that (and what it means)?
Typically we draw a so called Venn Diagram to figure out something like that. (Thinking)

It means that 10% read at least A and I would like to know how to calculate that and what it means and I know that part d is related to part c, so I would like to understand them both.
 
lola19991 said:
It means that 10% read at least A and I would like to know how to calculate that and what it means and I know that part d is related to part c, so I would like to understand them both.

Ok. So that means we have the following Venn Diagram.
\begin{tikzpicture}
\begin{scope}[blend group = soft light]
\fill[red!30!white] ( 90:2) circle (3);
\fill[green!30!white] (210:2) circle (3);
\fill[blue!30!white] (330:2) circle (3);
\end{scope}
\node at (90:5) {$A$};
\node at (210:5) {$B$};
\node at (330:5) {$C$};
\node at (90:3) {1\%};
\node at (210:3) {19\%};
\node at (330:3) {0\%};
\node {1\%};
\node at (30:2) {1\%};
\node at (150:2) {7\%};
\node at (270:2) {3\%};
\end{tikzpicture}
We can see that the people reading exactly 1 news paper are 1% + 19% + 0% = 20% of 100,000.
That is indeed 20,000 people. Good!

For (c) we want $(A∪C)∩B$.
That is, we look at the $A$ and $C$ combined.
And from those parts only the ones that are within $B$.
That is 7% + 1% + 3% isn't it? (Wondering)
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
29
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
9
Views
3K
  • · Replies 287 ·
10
Replies
287
Views
26K