MHB 3 newspapers- a question about Inclusion–exclusion principle

  • Thread starter Thread starter lola19991
  • Start date Start date
  • Tags Tags
    Principle
lola19991
Messages
6
Reaction score
0
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.
 
Physics news on Phys.org
lola19991 said:
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.

Hey Lola! (Wave)

Can you clarify what '10% read A' means exactly?
Does it mean that '10% read at least A'? Or '10% read only A'?

Anyway, for (c) we want to know:
$$\#(\text{at least 1 morning paper} \land \text{at least 1 evening paper})
=\#\Big((A \cup C) \cap B\Big)
$$
Do you know how to calculate that (and what it means)?
Typically we draw a so called Venn Diagram to figure out something like that. (Thinking)
 
lola19991 said:
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.

How did you solve the first two?
Why is Part c any different? (A or C) and B
Why is Part d any different? Subset of the answer to Part c?

Translation Hint:
How MANY people? People are countable.
How MUCH sugar? Sugar is in countable, but it is measurable.
How MANY frogs? Countable.
How MUCH air? Measurable.
 
I like Serena said:
Hey Lola! (Wave)

Can you clarify what '10% read A' means exactly?
Does it mean that '10% read at least A'? Or '10% read only A'?

Anyway, for (c) we want to know:
$$\#(\text{at least 1 morning paper} \land \text{at least 1 evening paper})
=\#\Big((A \cup C) \cap B\Big)
$$
Do you know how to calculate that (and what it means)?
Typically we draw a so called Venn Diagram to figure out something like that. (Thinking)

It means that 10% read at least A and I would like to know how to calculate that and what it means and I know that part d is related to part c, so I would like to understand them both.
 
lola19991 said:
It means that 10% read at least A and I would like to know how to calculate that and what it means and I know that part d is related to part c, so I would like to understand them both.

Ok. So that means we have the following Venn Diagram.
\begin{tikzpicture}
\begin{scope}[blend group = soft light]
\fill[red!30!white] ( 90:2) circle (3);
\fill[green!30!white] (210:2) circle (3);
\fill[blue!30!white] (330:2) circle (3);
\end{scope}
\node at (90:5) {$A$};
\node at (210:5) {$B$};
\node at (330:5) {$C$};
\node at (90:3) {1\%};
\node at (210:3) {19\%};
\node at (330:3) {0\%};
\node {1\%};
\node at (30:2) {1\%};
\node at (150:2) {7\%};
\node at (270:2) {3\%};
\end{tikzpicture}
We can see that the people reading exactly 1 news paper are 1% + 19% + 0% = 20% of 100,000.
That is indeed 20,000 people. Good!

For (c) we want $(A∪C)∩B$.
That is, we look at the $A$ and $C$ combined.
And from those parts only the ones that are within $B$.
That is 7% + 1% + 3% isn't it? (Wondering)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top