3 newspapers- a question about Inclusion–exclusion principle

  • Context: MHB 
  • Thread starter Thread starter lola19991
  • Start date Start date
  • Tags Tags
    Principle
Click For Summary
SUMMARY

The discussion revolves around solving a problem using the Inclusion-Exclusion Principle to analyze newspaper readership in a city of 100,000 people. The participants calculate that 20,000 people read only one newspaper and 12,000 read at least two newspapers. They seek assistance in determining the number of people who read at least one morning newspaper (A or C) and one evening newspaper (B), as well as those who read one morning and one evening newspaper. The calculations involve using Venn Diagrams and set operations to derive the answers for parts (c) and (d) of the problem.

PREREQUISITES
  • Understanding of the Inclusion-Exclusion Principle
  • Familiarity with Venn Diagrams
  • Basic knowledge of set theory
  • Ability to perform percentage calculations
NEXT STEPS
  • Learn how to apply the Inclusion-Exclusion Principle in various contexts
  • Study advanced Venn Diagram techniques for complex set problems
  • Explore set operations and their applications in probability
  • Practice solving real-world problems involving multiple categories
USEFUL FOR

Students, mathematicians, and data analysts interested in combinatorial problems and set theory applications will benefit from this discussion.

lola19991
Messages
6
Reaction score
0
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.
 
Physics news on Phys.org
lola19991 said:
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.

Hey Lola! (Wave)

Can you clarify what '10% read A' means exactly?
Does it mean that '10% read at least A'? Or '10% read only A'?

Anyway, for (c) we want to know:
$$\#(\text{at least 1 morning paper} \land \text{at least 1 evening paper})
=\#\Big((A \cup C) \cap B\Big)
$$
Do you know how to calculate that (and what it means)?
Typically we draw a so called Venn Diagram to figure out something like that. (Thinking)
 
lola19991 said:
There is a city with 100,000 people, which has 3 newspapers: A, B and C. 10% read A, 30% read B, 5% read C. 8% read A and B, 2% read A and C, 4% read B and C and only 1% read all of them.
a) How much people read only one newspaper?
b) How much people read at least two newspapers?
c) If A and C are morning newspapers and B is an evening newspaper, how much people read at least one morning newspaper and one evening newspaper?
d) How much people read one morning newspaper and one evening newspaper?
--------------
I did a&b and the answers that I got are:
a) 20,000
b) 12,000
--------------
I would like to know how to solve the other parts of the question.

How did you solve the first two?
Why is Part c any different? (A or C) and B
Why is Part d any different? Subset of the answer to Part c?

Translation Hint:
How MANY people? People are countable.
How MUCH sugar? Sugar is in countable, but it is measurable.
How MANY frogs? Countable.
How MUCH air? Measurable.
 
I like Serena said:
Hey Lola! (Wave)

Can you clarify what '10% read A' means exactly?
Does it mean that '10% read at least A'? Or '10% read only A'?

Anyway, for (c) we want to know:
$$\#(\text{at least 1 morning paper} \land \text{at least 1 evening paper})
=\#\Big((A \cup C) \cap B\Big)
$$
Do you know how to calculate that (and what it means)?
Typically we draw a so called Venn Diagram to figure out something like that. (Thinking)

It means that 10% read at least A and I would like to know how to calculate that and what it means and I know that part d is related to part c, so I would like to understand them both.
 
lola19991 said:
It means that 10% read at least A and I would like to know how to calculate that and what it means and I know that part d is related to part c, so I would like to understand them both.

Ok. So that means we have the following Venn Diagram.
\begin{tikzpicture}
\begin{scope}[blend group = soft light]
\fill[red!30!white] ( 90:2) circle (3);
\fill[green!30!white] (210:2) circle (3);
\fill[blue!30!white] (330:2) circle (3);
\end{scope}
\node at (90:5) {$A$};
\node at (210:5) {$B$};
\node at (330:5) {$C$};
\node at (90:3) {1\%};
\node at (210:3) {19\%};
\node at (330:3) {0\%};
\node {1\%};
\node at (30:2) {1\%};
\node at (150:2) {7\%};
\node at (270:2) {3\%};
\end{tikzpicture}
We can see that the people reading exactly 1 news paper are 1% + 19% + 0% = 20% of 100,000.
That is indeed 20,000 people. Good!

For (c) we want $(A∪C)∩B$.
That is, we look at the $A$ and $C$ combined.
And from those parts only the ones that are within $B$.
That is 7% + 1% + 3% isn't it? (Wondering)
 

Similar threads

Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K