MHB -307.28.1 Find the general solution to the system of DE

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{28.1}$
2000
Find the general solution to the system of differential equations
\begin{align*}\displaystyle
y'_1&=y_1+5y_2\\
y'_2&=-2y_1+-y_2
\end{align*}
why is there a $+-y_2$ in the given
ok going to take this a step at a time... so..$A=\left[\begin{array}{c}1 & 5 \\ -2 & -1 \end{array}\right]$
then
$\left[\begin{array}{c}1-\lambda & 5 \\ -2 & -1-\lambda \end{array}\right]
=\lambda^2+9$ ?
 
Last edited:
Physics news on Phys.org
yes, [math]\left|\begin{array}{cc}1- \lambda & 5 \\ -2 & -1- \lambda\end{array}\right|= (1- \lambda)(-1- \lambda)+ 10= -1- \lambda+ \lambda+ \lambda^2+ 10= \lambda^2+ 9= 0[/math].

Now, what are the values of [math]\lambda[/math]?
 
Last edited by a moderator:
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K