MHB 307w.43.M40 find corresponding 3 scalars

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Scalars
Click For Summary
SUMMARY

The discussion focuses on the row reduction of matrices B and C to their reduced row echelon forms (RREF). Both matrices yield the same RREF, specifically $\text{rref}(B)=\text{rref}(C)=\left[ \begin{array}{cccc} 1 & 0 & 7 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$. The process involves a series of row operations, including adding and subtracting rows to achieve the desired form. The final goal is to express each row of matrix B as a linear combination of the rows of matrix C, and vice versa, leading to a system of equations that can be solved for the coefficients.

PREREQUISITES
  • Understanding of matrix operations, specifically row reduction techniques.
  • Familiarity with the concept of linear combinations of vectors.
  • Knowledge of reduced row echelon form (RREF) and its properties.
  • Basic proficiency in solving systems of linear equations.
NEXT STEPS
  • Study the process of Gaussian elimination and its application in finding RREF.
  • Learn about linear combinations and their significance in linear algebra.
  • Explore the relationship between different forms of matrices and their implications in solving linear systems.
  • Practice writing rows of one matrix as linear combinations of another through various examples.
USEFUL FOR

Students and educators in linear algebra, mathematicians focusing on matrix theory, and anyone involved in solving systems of linear equations or studying matrix transformations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Screenshot 2021-01-16 at 6.28.10 PM.png

ok did an image due to notation to be correct, we will be talking about this in the zoom class next week
but wanted to some grip of it before. Here is the RREFs
$\text{rref}(B)=\left[ \begin{array}{cccc} 1 & 0 & 7 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$
I assume we can switch c3 and c4 to get the triangle
and
$\text{rref}(C)=\left[ \begin{array}{cccc} 1 & 0 & 7 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$
 
Last edited:
Physics news on Phys.org
That looks good. You started with $B= \begin{bmatrix}1 & 3 & -2 & 2 \\ -1 & -2 & -1 & -1 \\ -1 & -5 & 8 & -3\end{bmatrix}$ and, I presume, added the first row to both second and third rows to get $\begin{bmatrix}1 & 3 & -2 & 2 \\ 0 & 1 & -3 & 1 \\ 0 & -2 & 6 & -1\end{bmatrix}$ and then add twice the second row to the third to get $\begin{bmatrix}1 & 3 & -2 & 2 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 1\end{bmatrix}$. Now subtract three times the new second row from the first row to get $\begin{bmatrix}1 & 0 & 7 & -1 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 1\end{bmatrix}$ and, finally, add the new third row to the first row and subtract the new third row from the second row to get $\begin{bmatrix}1 & 0 & 7 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}$

And with $C= \begin{bmatrix}1 & 2 & 1 & 2 \\ 1 & 1 & 4 & 0 \\ -1 & -1 & -4 & 1 \end{bmatrix}$ I think I would first add the second row to the third, then subtract the first row from the second to get $\begin{bmatrix}1 & 2 & 1 & 2 \\ 0 & -1 & 3 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Subtract twice the third row from the first row and add twice the third row to the second row to get $\begin{bmatrix}1 & 2 & 1 & 0 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Finally, add twice the new second row to the first row, then multiply the second row by -1 to get $\begin{bmatrix}1 & 0 & 7 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Yes, the two matrices row-reduce to the same thing.

Now to do the rest of the exercise, write each row of B as a linear combination of rows of C, you can use each of those row-reductions. Each row of that row reduction is a linear combination of rows of C. For example the only change in the first row of C was when we added "twice the new second row to the first row" and the "new second row" was formed when we added "twice the third row to the second row". Writing the first, second, and third rows as $c_1$, $c_2$, and $c_2$, respectively, adding twice the third row to the second row gives $c_2+ 2c_3$ and adding twice that to first row gives $c_1+ 2(c_2+ 2c_3)= c_1+ cr_2+ 4c_3$. Do that for the second and third rows to get the rows of the common row-reduced matrix as linear combinations of the rows of C.

Do the same to get the rows of the common row reduced matrix in term of the rows of B, $b_1$, $b_2$, and $b_3$. Then set those equal to the expressions in terms of $c_1$, $c_2$, and $c_3$ and solve for $b_1$, $b_2$, and $b_3$ in terms of $c_1$, $c_2$, and $c_3$!
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K