MHB 311.1.5.17 geometric description

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Geometric
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.1.5.17}$
Give a geometric description of the solution set.

$\begin{array}{rrrrr}
-2x_1&+2x_2&+4x_3&=0\\
-4x_1&-4x_2&-8x_3&=0\\
&-3x_2&-3x_3&=0
\end{array}$
this can be written as
$\left[\begin{array}{rrr|rr}-2&2&4&0\\-4&-4&-8&0\\&-3&-3&0\end{array}\right]$

$\text{RREF}=\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$
ok I am not sure how you get a geometric description with everything going to zero
 
Physics news on Phys.org
the point (0,0,0)
 
Equivalently the matrix [math]\begin{bmatrix}-2 & 2 & 4 \\ -4 & -4 & 8 \\ 0 & -3 & -3\end{bmatrix}[/math] has determinant [math]\left|\begin{array}{ccc}-2 & 2 & 4 \\ -4 & -4 & 8 \\ 0 & -3 & -3 \end{array}\right|= 3\left|\begin{array}{cc}-2 & 4 \\ -4 & 8\end{array}\right|- 3\left|\begin{array}{cc}-2 & 2 \\ -4 & -4\end{array}\right|= 3(-16+ 16)- 3(8+ 8)= -3(16)= -48 [/math] which is not 0 so is a "one to one" transformation. The only vector that is mapped to the 0 vector is the 0 vector itself.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads