MHB 311.1.5.5 homogeneous systems in parametric vector form.

Click For Summary
The discussion revolves around expressing the solution set of a homogeneous system of equations in parametric vector form. The equations provided lead to a representation of the solution as a linear combination of vectors, but there are concerns about the accuracy of the notation and whether it correctly reflects the null space. Participants question the use of "0" in red and its labeling as a null space, clarifying that it simply represents the zero vector. Additionally, there is a request for online calculators to verify the solutions, as no book answers are available. The conversation highlights the importance of precision in mathematical notation and understanding.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Write the solution set of the given homogeneous systems in parametric vector form.
$\begin{array}{rrrr}
-2x_1& +2x_2& +4x_3& =0\\
-4x_1& -4x_2& -8x_3& =0\\
&-3x_2& -3x_3& =0
\end{array}\implies
\left[\begin{array}{rrrr}
x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{rrrr}
-2\\-4\\\color{red}{0}
\end{array}\right]x_1
+\left[\begin{array}{rrrr}
2\\-4\\-3
\end{array}\right]x_2
+\left[\begin{array}{rrrr}
4\\-8\\-3
\end{array}\right]x_3$
red is a null space

ok its looks straight forward but still ? typos etc
is there an online calculator to check these
no book answer on this one
 
Physics news on Phys.org
karush said:
Write the solution set of the given homogeneous systems in parametric vector form.
$\begin{array}{rrrr}
-2x_1& +2x_2& +4x_3& =0\\
-4x_1& -4x_2& -8x_3& =0\\
&-3x_2& -3x_3& =0
\end{array}\implies
\left[\begin{array}{rrrr}
x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{rrrr}
-2\\-4\\\color{red}{0}
\end{array}\right]x_1
+\left[\begin{array}{rrrr}
2\\-4\\-3
\end{array}\right]x_2
+\left[\begin{array}{rrrr}
4\\-8\\-3
\end{array}\right]x_3$
red is a null space

ok its looks straight forward but still ? typos etc
is there an online calculator to check these
no book answer on this one
No. The sum is not equal to "$\begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix}$. It is equal to "$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$".
I also do not understand why you have written the "0" in red and called it a "null space". It is simply the number 0.

This is $\begin{bmatrix} -2 \\ -4 \\ 0 \end{bmatrix} x_1+ \begin{bmatrix} 2 \\ -4 \\ 3 \end{bmatrix} x_2+ \begin{bmatrix} 4 \\ -8 \\ -3 \end{bmatrix}x_3= \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix}$.
 
ok i tried to follow a hand written example in saw on Google images 😕
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K