MHB 33. Express sin 4x in terms of sin x and cos x

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Cos Sin Terms
AI Thread Summary
The discussion focuses on expressing the function sin(4x) in terms of sin(x) and cos(x). The transformation begins with the identity sin(2a) = 2sin(a)cos(a), leading to sin(4x) = 2sin(2x)cos(2x). Further, cos(2x) is expressed as cos^2(x) - sin^2(x), resulting in sin(4x) = 4sin(x)cos(x)(cos^2(x) - sin^2(x)). Participants express uncertainty about whether the derivation meets the original request for expressing sin(4x) solely as a trigonometric function of x. The final expression combines these identities effectively.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Express function as a trigonometric function of x
$$\sin(4x)$$
use $\sin2a=2\sin a\cos a$ then
$$\sin4x=2\sin 2x\cos 2x$$
with $\cos(2x) = \cos^2(x)-\sin^2(x)$ replace again
$$\sin 4x=4\sin x\cos x+\cos^2(x)-sin^2(x)$$

ok not real sure if this is what they are asking for
and if I should go further with it even if the steps are ok
 
Mathematics news on Phys.org
karush said:
Express function as a trigonometric function of x
$$\sin(4x)$$
use $\sin2a=2\sin a\cos a$ then
$$\sin4x=2\sin 2x\cos 2x$$
with $\cos(2x) = \cos^2(x)-\sin^2(x)$ replace again
$$\color{red}{\sin 4x=4\sin x\cos x+\cos^2(x)-sin^2(x)}$$

ok not real sure if this is what they are asking for
and if I should go further with it even if the steps are ok

$\color{red}{\sin(4x) = 2\sin(2x)\cos(2x) = (4\sin{x}\cos{x})(\cos^2{x}-\sin^2{x})}$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top