4D angular coordinate system and corresponding hypervolume element

Click For Summary
A 4D angular coordinate system is being sought, specifically one that includes a radius and three angles, along with its hypervolume element. The discussion references established 2D and 3D coordinate systems, noting that the proposed 4D spherical coordinates can be derived from these. The coordinates provided allow for the computation of the hypervolume element, although there is uncertainty about the standard terminology for 4D spherical coordinates. The conversation also mentions a Wikipedia reference that discusses hyperspherical coordinates in arbitrary dimensions, which aligns with the proposed 4D system. Clarification on the standard term for 4D coordinates remains unresolved.
areslagae
Messages
11
Reaction score
0
I am looking for a 4D angular coordinate system (radius and three angles) and its corresponding "hypervolume element".

2D: polar coordinates - dA = r dr dtheta
3D: spherical coordinates - dV = r^2 sin(phi) dphi dtheta dr
4D: ?
 
Mathematics news on Phys.org
4-D spherical coordinates:

x1 = r sin(theta1) sin(theta2) cos(phi)
x2 = r sin(theta1) sin(theta2) sin(phi)
x3 = r sin(theta1) cos(theta2)
x4 = r cos(theta1)

from which you can compute the hypervolume element.
 
Thanks.

Is "4-D spherical coordinates" established terminology?
Is this the "standard" transformation? I guess there are other ones?
 
areslagae said:
Thanks.

Is "4-D spherical coordinates" established terminology?
Is this the "standard" transformation? I guess there are other ones?

I just checked wikipedia. There, the generalization to arbitrary dimension is called http://en.wikipedia.org/wiki/Hypersphere#Hyperspherical_coordinates". They are the same that I gave you in the 4-D case except for the order of the coordinates.
I don't know what the standard term in the case n=4 is.
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K