1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Rotation and Translation coordinates

  1. Aug 5, 2016 #1
    I am currently reading Goldstein's Classical mechanics and come on to this problem. Let q1,q2,...,qn be generalized coordinates of a holonomic system and T its kinetic energy. qk correspondes to a translation of the entire system and qj a rotation of the entire system around some axis, then ∂qjT=∂qkT=0 since velocities are not affected by a translation of the origin or a rotation of the coordinate axes.
    Now take as an example the kinetic energy of a single particle in spherical coordiantes, here the polar angle θ correspondes to a rotation of the system, but T is dependent on θ. r correspondes to a translation of the particle and therefore the system but T depends on r. How should I undersand this?
    Mvh. Frederik
     
  2. jcsd
  3. Aug 5, 2016 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    T does not depend on ##\theta## but on ##\dot\theta## which is a different generalized coordinate...
    idem ##r## and ##\dot r##
     
  4. Aug 5, 2016 #3
    Actually it is a definition:
    "the system admits translation along the generalized coordinate ##q^j##"##\Longleftrightarrow## ##"\frac{\partial T}{\partial q^j}=0"##. Or equivalently iff ##T## is invariant under the group ##q^j\mapsto q^j+s,\quad s\in \mathbb{R}##
    It doesn't matter what is ## q^j##. If ##q^j## is an angle then we say that the system admits a rotation.
     
  5. Aug 5, 2016 #4
    For a system consisting of one particle with mass m one writes T=½m(dr/dt2+r2 dθ/dt2+r2sin2θ dφ/dt2) in spherical coordinates, θ being the polar angle and φ the azimutal angle, that makes T=T(r, θ, dr/dt, dθ/dt, dφ/dt).
     
  6. Aug 5, 2016 #5
    O now I see what you want. This is a good question indeed. It is because ##\theta\mapsto \theta+s## is not a rotation of the space about a fixed axis. Look how all the points of the space conduct under this transformation
     
  7. Aug 6, 2016 #6
    Okay, so one might say:
    Let ##T=\frac{1}{2}m\dot{\textbf{r}}\cdot\dot{\textbf{r}}## be the kinetic energy of a one particle system, ##\textbf{r}## the position vector in some frame and q a set of generalized coordinates. ##q_{k}## is called a translation coordinate when there exists a vector ##\textbf{n}## such that ##\frac{\partial \textbf{r}}{\partial q_{k}}=\textbf{n}## fulfilling ##\dot{\textbf{n}}=\textbf{0}##. Then ##\frac{\partial T}{\partial q_{k}}=m\dot{\textbf{r}}\cdot\frac{d}{dt}\frac{\partial\textbf{r}}{\partial q_{k}}=0##.
    When this is true ##q_{k}##is said to translate the system in the direction of ##\textbf{n}##.

    ##q_{j}## is called a rotation coordinate when there exists a vector ##\textbf{n}## such that ##\frac{\partial \textbf{r}}{\partial q_{j}}=\textbf{n}\times\textbf{r}## fulfilling ##\dot{\textbf{n}}=\textbf{0}##. Then ##\frac{\partial T}{\partial q_{j}}=m\dot{\textbf{r}}\cdot\frac{d}{dt}\frac{\partial\textbf{r}}{\partial q_{j}}=0##.
    When this is true ##q_{k}## is said to rotate the system around the direction of ##\textbf{n}##.
    The generalazation to more particles follows naturally.

    Within this definition the coordinates r and ##\theta## of the spherical coordinate system, in general neither translates nor rotates the system since the r unitvector, ##\hat{\textbf{r}}##, depends on time and the rotation axis of ##\theta##, nθ, depends on time. The coordinate φ is a rotation coordinate since its rotation axis nφ correspondes to the fixed polar axis.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted