MHB -7.3.89 Integral with trig subst

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary
The discussion focuses on evaluating the integral I = ∫(dx/(x²√(x²-16))). A substitution of x = 4sec(θ) is proposed, leading to dx = 4tan(θ)sec(θ)dθ. While this substitution is deemed acceptable, an alternative hyperbolic substitution, x = 4cosh(t), is suggested for personal preference. The integral is further simplified through trigonometric identities, ultimately leading to a final expression involving sine and cosine functions. The conversation highlights different approaches to solving the integral while confirming the validity of the initial substitution.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{array}{lll}
I&=\displaystyle\int{\frac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta
\end{array}$

just seeing if I started with the right x and dx or is there better

Mahalo
 
Physics news on Phys.org
Details! [math]dx = 4 ~ tan( \theta ) ~ sec( \theta ) ~ d \theta [/math].

Otherwise, good.

-Dan
 
That substitution would be fine, but I would probably lean more towards a hyperbolic substitution (just personal preference).

$\displaystyle \begin{align*} x = 4\cosh{ \left( t \right) } \implies \mathrm{d}x = 4\sinh{\left( t \right) } \,\mathrm{d}t \end{align*}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\begin{array}{lll}
&=\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}\\
&=\dfrac{1}{16}\int\cos\theta \, d\theta
=\dfrac{\sin \theta}{16}\\
&=\dfrac{\dfrac{\sqrt{x^2-16}}{x}}{16}\\
&=\dfrac{\sqrt{x^2-16}}{16x}\\
&=\int\sin^6 x(1-\sin^2 x) \, dx\\
&=\cos(x) dx \\
&u=\sin{x}\ du=\cos x \, dx\\
&=\int{(u^6-u^8)\ du}\implies \dfrac{u^7}{7}-\dfrac{u^9}{9}+C\\
&=\dfrac{{{{sin}}^7 x\ }}{7}-\dfrac{{{{sin}}^9 x\ }}{9}+C
\end{array}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\displaystyle\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}d\theta$
 
Last edited:
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K