-7.3.89 Integral with trig subst

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary
SUMMARY

The integral \( I = \int \frac{dx}{x^2\sqrt{x^2-16}} \) can be effectively evaluated using the substitution \( x = 4\sec\theta \) and \( dx = 4\tan\theta\sec\theta \, d\theta \). An alternative approach using hyperbolic substitution, \( x = 4\cosh(t) \) with \( dx = 4\sinh(t) \, dt \), is also valid and preferred by some users. The final evaluation leads to expressions involving trigonometric identities and results in \( \frac{\sin^7 x}{7} - \frac{\sin^9 x}{9} + C \).

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric and hyperbolic functions
  • Knowledge of substitution techniques in integration
  • Ability to manipulate and simplify trigonometric identities
NEXT STEPS
  • Study hyperbolic functions and their applications in integration
  • Learn advanced techniques for evaluating integrals involving trigonometric substitutions
  • Explore the use of trigonometric identities in simplifying integrals
  • Practice solving integrals with various substitution methods
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to deepen their understanding of trigonometric and hyperbolic substitutions in integral calculus.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{array}{lll}
I&=\displaystyle\int{\frac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta
\end{array}$

just seeing if I started with the right x and dx or is there better

Mahalo
 
Physics news on Phys.org
Details! [math]dx = 4 ~ tan( \theta ) ~ sec( \theta ) ~ d \theta [/math].

Otherwise, good.

-Dan
 
That substitution would be fine, but I would probably lean more towards a hyperbolic substitution (just personal preference).

$\displaystyle \begin{align*} x = 4\cosh{ \left( t \right) } \implies \mathrm{d}x = 4\sinh{\left( t \right) } \,\mathrm{d}t \end{align*}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\begin{array}{lll}
&=\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}\\
&=\dfrac{1}{16}\int\cos\theta \, d\theta
=\dfrac{\sin \theta}{16}\\
&=\dfrac{\dfrac{\sqrt{x^2-16}}{x}}{16}\\
&=\dfrac{\sqrt{x^2-16}}{16x}\\
&=\int\sin^6 x(1-\sin^2 x) \, dx\\
&=\cos(x) dx \\
&u=\sin{x}\ du=\cos x \, dx\\
&=\int{(u^6-u^8)\ du}\implies \dfrac{u^7}{7}-\dfrac{u^9}{9}+C\\
&=\dfrac{{{{sin}}^7 x\ }}{7}-\dfrac{{{{sin}}^9 x\ }}{9}+C
\end{array}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\displaystyle\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}d\theta$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K