MHB -7.3.89 Integral with trig subst

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary
The discussion focuses on evaluating the integral I = ∫(dx/(x²√(x²-16))). A substitution of x = 4sec(θ) is proposed, leading to dx = 4tan(θ)sec(θ)dθ. While this substitution is deemed acceptable, an alternative hyperbolic substitution, x = 4cosh(t), is suggested for personal preference. The integral is further simplified through trigonometric identities, ultimately leading to a final expression involving sine and cosine functions. The conversation highlights different approaches to solving the integral while confirming the validity of the initial substitution.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{array}{lll}
I&=\displaystyle\int{\frac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta
\end{array}$

just seeing if I started with the right x and dx or is there better

Mahalo
 
Physics news on Phys.org
Details! [math]dx = 4 ~ tan( \theta ) ~ sec( \theta ) ~ d \theta [/math].

Otherwise, good.

-Dan
 
That substitution would be fine, but I would probably lean more towards a hyperbolic substitution (just personal preference).

$\displaystyle \begin{align*} x = 4\cosh{ \left( t \right) } \implies \mathrm{d}x = 4\sinh{\left( t \right) } \,\mathrm{d}t \end{align*}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\begin{array}{lll}
&=\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}\\
&=\dfrac{1}{16}\int\cos\theta \, d\theta
=\dfrac{\sin \theta}{16}\\
&=\dfrac{\dfrac{\sqrt{x^2-16}}{x}}{16}\\
&=\dfrac{\sqrt{x^2-16}}{16x}\\
&=\int\sin^6 x(1-\sin^2 x) \, dx\\
&=\cos(x) dx \\
&u=\sin{x}\ du=\cos x \, dx\\
&=\int{(u^6-u^8)\ du}\implies \dfrac{u^7}{7}-\dfrac{u^9}{9}+C\\
&=\dfrac{{{{sin}}^7 x\ }}{7}-\dfrac{{{{sin}}^9 x\ }}{9}+C
\end{array}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\displaystyle\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}d\theta$
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
8
Views
2K
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K