-7.3.89 Integral with trig subst

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral \( I=\int{\frac{dx}{x^2\sqrt{x^2-16}}} \) using trigonometric substitution. Participants explore different substitution methods and their implications for solving the integral.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant proposes the substitution \( x=4\sec\theta \) and calculates \( dx=4\tan \theta\sec \theta \), seeking validation of this approach.
  • Another participant confirms the substitution and provides the correct expression for \( dx \).
  • A different participant suggests a preference for a hyperbolic substitution, specifically \( x = 4\cosh{(t)} \), and provides the corresponding differential \( dx=4\sinh{(t)} \, dt \).
  • Subsequent posts attempt to evaluate the integral using the initial trigonometric substitution, leading to various transformations and expressions, but the steps appear to become convoluted and unclear.

Areas of Agreement / Disagreement

There is no clear consensus on the best substitution method, as participants express differing preferences for trigonometric versus hyperbolic substitutions. The evaluation steps also show a lack of agreement on the correctness of the transformations made.

Contextual Notes

The discussion includes various mathematical transformations and substitutions that may depend on specific assumptions or definitions. Some steps in the evaluation process remain unresolved or unclear, particularly in the later posts.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{array}{lll}
I&=\displaystyle\int{\frac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta
\end{array}$

just seeing if I started with the right x and dx or is there better

Mahalo
 
Physics news on Phys.org
Details! [math]dx = 4 ~ tan( \theta ) ~ sec( \theta ) ~ d \theta [/math].

Otherwise, good.

-Dan
 
That substitution would be fine, but I would probably lean more towards a hyperbolic substitution (just personal preference).

$\displaystyle \begin{align*} x = 4\cosh{ \left( t \right) } \implies \mathrm{d}x = 4\sinh{\left( t \right) } \,\mathrm{d}t \end{align*}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\begin{array}{lll}
&=\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}\\
&=\dfrac{1}{16}\int\cos\theta \, d\theta
=\dfrac{\sin \theta}{16}\\
&=\dfrac{\dfrac{\sqrt{x^2-16}}{x}}{16}\\
&=\dfrac{\sqrt{x^2-16}}{16x}\\
&=\int\sin^6 x(1-\sin^2 x) \, dx\\
&=\cos(x) dx \\
&u=\sin{x}\ du=\cos x \, dx\\
&=\int{(u^6-u^8)\ du}\implies \dfrac{u^7}{7}-\dfrac{u^9}{9}+C\\
&=\dfrac{{{{sin}}^7 x\ }}{7}-\dfrac{{{{sin}}^9 x\ }}{9}+C
\end{array}$
 
so finally maybe...

Evaluate the Integral $I=\int{\dfrac{dx}{x^2\sqrt{x^2-16}}}
\quad x=4\sec\theta
\quad dx=4\tan \theta\sec \theta$
thus $\sec^{-1} \dfrac{x}{4} \sin\theta =\dfrac{\sqrt{x^2-16}}{x}$
Substitute
$\displaystyle\int{\dfrac{4{{tan} \theta {\sec \theta }}}
{16{{\sec}^2 \theta \cdot 4{{tan} \theta }}}}d\theta$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
8
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K