7.4.32 Evaluate the integral by completing the square

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Square
Click For Summary
SUMMARY

The integral $\displaystyle \int_0^1\dfrac{x}{x^2+4x+13}\, dx$ is evaluated by completing the square in the denominator, transforming it into the form $(x+2)^2 + 9$. The substitution $u = x + 2$ simplifies the integral to $\int_2^3 \left(\dfrac{u}{u^2 + 9} - \dfrac{2}{u^2 + 9}\right) \, du$. The final result is computed as $\ln{\sqrt{\dfrac{18}{13}}} - \dfrac{\pi}{6} + \dfrac{2}{3}\arctan\left(\dfrac{2}{3}\right) \approx 0.03111$.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals.
  • Knowledge of completing the square technique in algebra.
  • Familiarity with substitution methods in integration.
  • Basic understanding of logarithmic and inverse trigonometric functions.
NEXT STEPS
  • Study advanced techniques in integration, such as integration by parts.
  • Learn about the properties of logarithmic functions in calculus.
  • Explore the applications of inverse trigonometric functions in integrals.
  • Practice solving integrals involving rational functions and completing the square.
USEFUL FOR

Students studying calculus, mathematics educators, and anyone looking to enhance their skills in evaluating integrals using algebraic techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
7.4.32 Evaluate the integral
$\displaystyle \int_0^1\dfrac{x}{x^2+4x+13}\, dx$
ok side work to complete the square
$x^2+4x=-13$
add 4 to both sides
$x^2+4x+4=-13+4$
simplify
$(x+2)^2+9=0$
ok now whatW|A returned ≈0.03111
 
Last edited:
Physics news on Phys.org
karush said:
7.4.32 Evaluate the integral
$\displaystyle \int_0^1\dfrac{x}{x^2+4x+13}\, dx$
ok side work to complete the square
$x^2+4x=-13$
add 4 to both sides
$x^2+4x+4=-13+4$
simplify
$(x+2)^2+9=0$
ok now what

$u = x+2 \implies du = dx$

$$\int_0^1 \dfrac{(x+2)-2}{(x+2)^2 + 9} \, dx$$

substitute and reset limits of integration ...

$$\int_2^3 \dfrac{u}{u^2 + 9} - \dfrac{2}{u^2+9} \, du$$

looks like the result will be a log and an inverse tangent ...
 
ok little ? about where $u=x+2$ and the limits work...

$$\Biggr|\dfrac{1}{2} \ln(u^2 + 9)-\frac{2}{3}\arctan \left(\frac{u}{3}\right)\Biggr|_2^3$$
 
karush said:
ok little ? about where $u=x+2$ and the limits work...

$\Bigg[\dfrac{1}{2} \ln(u^2 + 9)-\frac{2}{3}\arctan \left(\frac{u}{3}\right)\Bigg]_2^3$

$u=x+2$

lower limit of integration is $x=0 \implies x+2 = 0+2 = 2$, the lower limit of integration reset to a $u$ value

do the same for the upper limit of integration

$\Bigg[\dfrac{1}{2} \ln(u^2 + 9)-\dfrac{2}{3}\arctan \left(\dfrac{u}{3}\right)\Bigg]_2^3$

$\left[\dfrac{1}{2}\ln(18)-\dfrac{2}{3}\arctan(1)\right] - \left[\dfrac{1}{2}\ln(13) - \dfrac{2}{3}\arctan\left(\dfrac{2}{3}\right)\right]$

$\ln{\sqrt{\dfrac{18}{13}}} - \dfrac{\pi}{6} + \dfrac{2}{3}\arctan\left(\dfrac{2}{3} \right) \approx 0.03111$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K