MHB 8.2.5.evaluate int 64x sec^2(4x) dx

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The integral I = ∫ 64x sec²(4x) dx is evaluated using integration by parts, leading to the expression 16x tan(4x) - ∫ 16 tan(4x) dx. The integral of tan(4x) is computed as -4 ln|cos(4x)| + C. The final result is I = 16x tan(4x) + 4 ln|cos(4x)| + C. There is a discrepancy noted between this result and the answer provided by Wolfram Alpha, which omits the absolute value in the logarithm.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Evaluate $I=\displaystyle \int 64x\sec^2(4x) \, dx$

ok well first $64 \displaystyle\int x\sec^2(4x) \, dx$

off hand not sure what trig id to use or if we need to
 
Last edited:
Physics news on Phys.org
integration by parts …

$u = 16x \implies du = 16 \, dx$
$dv = 4\sec^2(4x) \, dx \implies v = \tan(4x)$

$\displaystyle \int 16x \cdot 4\sec^2(4x) \, dx = 16x \cdot \tan(4x) - \int 16\tan(4x) \, dx$

can you finish up?
 
skeeter said:
integration by parts …

$u = 16x \implies du = 16 \, dx$
$dv = 4\sec^2(4x) \, dx \implies v = \tan(4x)$

$\displaystyle \int 16x \cdot 4\sec^2(4x) \, dx = 16x \cdot \tan(4x) - \int 16\tan(4x) \, dx$

can you finish up?
so if ... (from plug in table)
$\displaystyle 16 \int \tan \left(4x\right)dx
=16\left[-\dfrac{1}{4}\ln \left|\cos \left(4x\right)\right|\right]+C
=-4\ln \left|\cos \left(4x\right)\right|+C$
Hence
$I=16x \cdot \tan(4x)+4\ln \left|\cos \left(4x\right)\right|+C$
Screenshot 2021-12-20 8.39.08 PM.png

anyway not sure...
 
not sure about what?
 
isn't W|A answer different or is it??
 
W/A omitted the absolute value around the log argument.
Why it did, I don't know.