A 2.8-kg block slides over the smooth icy hill -- Find the minimum speed to clear the pit

AI Thread Summary
To determine the minimum speed for a 2.8-kg block to clear a pit after sliding over an icy hill, the horizontal distance of 160 meters must be considered. The discussion highlights the need to identify the horizontal force acting on the block, as this force is crucial for calculating work done. The relationship between work (W), force (F), and distance (d) is emphasized, suggesting that the force must be horizontal to apply the work-energy principle effectively. Participants inquire about the specific horizontal force that influences the block's motion. Understanding these dynamics is essential for solving the problem accurately.
nouvelague
Messages
2
Reaction score
0
Homework Statement
A 2.8-kg
block slides over the smooth, icy hill shown in the figure (Figure 1). The top of the hill is horizontal and 70 m
higher than its base.
Figure1 of 1

Part A
What minimum speed must the block have at the base of the hill so that it will not fall into the pit on the far side of the hill?
Express your answer using two significant figures.

I'm assuming that since this has to go over the pit, it would have to then travel 160m and since it is horizontal distance it would have something to do with Fx, and therefore W=Fd? But also, there is going to be a vertical component, in that case mgh as well, and I have to solve for speed, so I need kinetic energy as well. But am I am not sure how to approach these problems or arranging the equations.
Relevant Equations
W=Fd
KE = 1/2 mv^2
PE = mgh
Screenshot 2024-10-19 211539.png
 
Physics news on Phys.org
nouvelague said:
it would have to then travel 160m and since it is horizontal distance it would have something to do with Fx, and therefore W=Fd?
What would F be here? If you are going to multiply it by a horizontal distance then it must be a horizontal force. What horizontal force?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top