madafo3435
- 55
- 15
In good time, his reasoning is very reasonable, but I must clarify that the signing force is not equal to -kmgxsen (##\theta##), it is actually -kmgx. Do you agree with me? Still, considering friction in this way, you may notice that you get the same result.rockinwhiz said:I think I've got it. First off, the total height is ##h##. Let the incline's length be ##d## and the angle between it and the vertical ##\theta##. Clearly, ##d \cos \theta =h##. Firstly, the acceleration on the particle ##= g \cos \theta -kgx \sin \theta##. Now here, ##a=dv/dt=(dv/dx) \cdot v##. Cross multiplying both sides with ##dx## and integrating from ## 0## to ##d## gives ##0=gd \cos \theta -(kd^2g \sin \theta) /2## (LHS is 0 as velocity is 0 at the beginning point and at ##d##). So, after some simple algebra ##d = 2 \cot \theta /k= h /( \cos \theta)##, yielding ##h=2 \cos \theta \cot \theta /k##. Then, adopting the same method over distance ##l##, where ##v## is maximum, I get ##v^2/2=gl \cos \theta + (kl^2 g \sin \theta)/2##. Now, differentiating both sides with respect to ##l## gives ##0=g \cos \theta - klg \sin \theta##(v is max here, so its derivative is zero). I end up with ##k \cot \theta = l##. Putting ##l##'s value in the last equation, simplifying, finally substituting ##k##'s value gives me:
$$v= \sqrt { \frac {gh} 2} $$
There might be some errors here and there because I've typed it VERY briefly and hastily, but I think this is it. Because, the given answer matches as well.