High School 'A Brief History of Time' question on gravity

Click For Summary
The discussion centers on the implications of gravitational force laws on planetary orbits as presented in Stephen Hawking's 'A Brief History of Time.' It clarifies that for stable orbits, gravitational force must decrease with distance according to the inverse square law (1/r^2), which balances centrifugal force. If gravity were to decrease faster (like 1/r^4 or 1/r^5), the Earth could potentially spiral into the Sun due to insufficient centrifugal force, but this scenario is nuanced by conservation laws. The conversation also touches on the complexity of orbits under different force laws, noting that many conditions do not yield simple, closed orbits. Overall, the balance between gravitational and centrifugal forces is critical for maintaining stable planetary orbits.
Nitram
Messages
7
Reaction score
0
I'm reading through Stephen Hawking's 'A Brief History of Time' and came across this sentence in the second chapter:

" If the law were that the gravitational attraction of a star went down faster or increased more rapidly with distance, the orbits of the planets would not be elliptical, they would either spiral into the sun or escape from the sun ."

I think the choice of wording is poor but I can see that if gravity increased with distance and was proportional to say, ##r^2## or ##r^3## then the distant stars would cause the Earth to escape from its current orbit around the Sun. However, if gravity was proportional to ##r^{-4}## or ##r^{-5}## why would the Earth spiral into the Sun? The Earth would experience a smaller gravitational force from the Sun. Would it be because there are effectively no forces from the distant stars and these are the forces that give the Earth its orbital velocity around the Sun? So the Earth's orbital velocity would gradually decrease until it 'fell' into the Sun.
 
Physics news on Phys.org
Nitram said:
Would it be because there are effectively no forces from the distant stars and these are the forces that give the Earth its orbital velocity around the Sun? So the Earth's orbital velocity would gradually decrease until it 'fell' into the Sun.
No, what’s going on has nothing to do with the distant stars. Even if the force were very weak, we could still drop an object straight into the sun if it weren’t also moving sideways. One way of thinking about it: a stable orbit requires centrifugal force to exactly balance the gravitational force. Too little centrifugal force and the object falls into the sun; too much and it escapes. When you work through the math (that’s the Bertrand’s Theorem that @PeroK linked) it turns out that only a ##1/r^2## force allows that balance.

I have appealed to “centrifugal force” here, but be aware that it’s a somewhat dubious notion. It’s OK for this handwaving answer, but it’s not a substitute for doing the math properly in an inertial frame)
 
Nugatory said:
No, what’s going on has nothing to do with the distant stars. Even if the force were very weak, we could still drop an object straight into the sun if it weren’t also moving sideways. One way of thinking about it: a stable orbit requires centrifugal force to exactly balance the gravitational force. Too little centrifugal force and the object falls into the sun; too much and it escapes. When you work through the math (that’s the Bertrand’s Theorem that @PeroK linked) it turns out that only a ##1/r^2## force allows that balance.

I have appealed to “centrifugal force” here, but be aware that it’s a somewhat dubious notion. It’s OK for this handwaving answer, but it’s not a substitute for doing the math properly in an inertial frame)
"Spiral into the sun seems" seems extreme. Given conservation of energy and conservation of angular momentum, there is a range of orbital radii which are permissible. For a wide range of force laws and initial conditions, you can't spiral in and you can't escape.

For most of these force laws and most initial conditions you will not have simple closed orbits that arrive back at their starting point. Whether to call these orbits "stable" is a different question. I'd call them stable but not closed.
 
jbriggs444 said:
For a wide range of force laws and initial conditions, you can't spiral in and you can't escape.
gah - yes, I did a brain slide from no stable (against perturbation) and closed orbits into no orbits.
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
977
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K