MHB A center of mass determined triangle: Find the angles of the triangle P_1P_2P_3

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Masses $m, 2m$ and $\sqrt{3}m$ are located at points $P_1, P_2$ and $P_3$ on a circle $C$
so that their center of mass coincides with the center of $C$.
Find the angles of the triangle $P_1P_2P_3$.
 
Mathematics news on Phys.org
Here´s the suggested solution:

Let $C$ be the unit circle of the $xy$-plane, with mass $m$ at the point $(1; 0)$.

If \[\angle P_1OP_2 = \alpha, \: \: \: \angle P_1OP_3 = \beta\] – then\[m\cdot 0+2m\sin \alpha +\sqrt{3}m\sin \beta = 0\: \: \: \: (1). \\ m\cdot 1 +2m\cos \alpha +\sqrt{3}m\cos \beta = 0\: \: \: \: (2).\]From $(1)$: \[\frac{\sin \alpha }{\sin \beta }= -\frac{1}{2}\sqrt{3}\]substitute in $(2)$ and obtain\[1 + 2 \cos \alpha +\sqrt{3}\sqrt{1-\frac{4}{3}\sin^2\alpha } = 0,\]whence\[\cos \alpha = -\frac{1}{2}, \: \: \alpha = 120^{\circ}.\]so that\[\sin \beta = -1, \: \: \beta = 270^{\circ}.\]Thus, the angles of $\bigtriangleup P_1P_2P_3$ are: $45^{\circ}, 60^{\circ}, 75^{\circ}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top