MHB A cyclic group with only one generator can have at most two elements

Click For Summary
A cyclic group with only one generator can have at most two elements. If a group has an element \( a \neq e \), then its inverse \( a^{-1} \) is also present, leading to the conclusion that \( a \) must equal \( a^{-1} \). This implies \( a^2 = e \), indicating the group has two elements: \( e \) and \( a \). If the group consists solely of the identity element \( e \), it remains cyclic with one generator. Thus, the proof confirms that a cyclic group with a single generator can only contain one or two elements.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Show that a cyclic group with only one generator can have at most two elements.

I thought the following:

When $a \neq e$ is in the group, then $a^{-1}$ is also in the group.
So, when $a$ is a generator, then $a^{-1}$ is also a generator.

Is this correct?? (Wondering)

But I how can I use this to show that a cyclic group with only one generator can have at most two elements??

Or should I use something else to prove this?? (Wasntme)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Show that a cyclic group with only one generator can have at most two elements.

I thought the following:

When $a \neq e$ is in the group, then $a^{-1}$ is also in the group.
So, when $a$ is a generator, then $a^{-1}$ is also a generator.

Is this correct?? (Wondering)

But I how can I use this to show that a cyclic group with only one generator can have at most two elements??

Or should I use something else to prove this?? (Wasntme)

Hi mathmari,

By having an $a\in G$ different from $e$, you are assuming $G$ has more than one element. It's true that $a$ and $a^{-1}$ will generate $G$, but this does not follow from the fact that $a^{-1}$ is in the group. Instead, it follows from the fact that any element in a group has the same order as its inverse. Now, knowing that $a$ and $a^{-1}$ generate $G$ and $G$ has only one generator, you deduce that $a = a^{-1}$, i.e., $a^2 = e$. So $G$ has order two, with elements $e$ and $a$.

Of course, if $G = {e}$, then $G$ is cyclic with one generator. So all cases have been covered.
 
Euge said:
Hi mathmari,

By having an $a\in G$ different from $e$, you are assuming $G$ has more than one element. It's true that $a$ and $a^{-1}$ will generate $G$, but this does not follow from the fact that $a^{-1}$ is in the group. Instead, it follows from the fact that any element in a group has the same order as its inverse. Now, knowing that $a$ and $a^{-1}$ generate $G$ and $G$ has only one generator, you deduce that $a = a^{-1}$, i.e., $a^2 = e$. So $G$ has order two, with elements $e$ and $a$.

Of course, if $G = {e}$, then $G$ is cyclic with one generator. So all cases have been covered.

Have we proven in that way that a cyclic group with only one generator can have at most two elements??
 
Certainly. Either $G$ has one element (which is cyclic with only one generator) or it has more than element, in which case $G$ has only two elements.
 
mathmari said:
Have we proven in that way that a cyclic group with only one generator can have at most two elements??

Yes, but it might be hard for you to SEE.

Suppose that we have $b \in G$ with $b \neq a,e$. Since $a$ generates $G$, it must be that $b = a^k$ for some integer $k$. However, since $a^k = e$ if $k$ is even, and $a^k = a$ if $k$ is odd, there is no such $b$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 26 ·
Replies
26
Views
801
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K