B A doubt regarding vectors, scalars and their role in physics

AI Thread Summary
The discussion centers on the classification of physical quantities as vectors or scalars and the reliability of operations involving them. It is noted that there are no guarantees that all measured quantities can be categorized this way, as these classifications are based on axioms and postulates that are tested experimentally. An example is provided where the mass of a hydrogen atom does not equal the sum of its constituent proton and electron masses in relativistic mechanics. Scalars and vectors are described as zero- and first-order tensors, respectively, with higher-order tensors also being relevant in physics and engineering. The conversation concludes with an acknowledgment of the complexities involved in these classifications.
JackFyre
Messages
15
Reaction score
7
TL;DR Summary
A doubt regarding vectors, scalars and their role in physics
I have a doubt regarding the basic function of vectors and scalars in physics-

What is the guarantee that every quantity(measured) in physics can be classified as either a vector or a scalar, and that while performing operations on said quantities, they will obey the already established rules of vector/scalar operations?
 
Physics news on Phys.org
JackFyre said:
What is the guarantee that every quantity(measured) in physics can be classified as either a vector or a scalar, and that while performing operations on said quantities, they will obey the already established rules of vector/scalar operations?

zero... zero guarantees... It just seems to do quite alright considering what we've achieved by using them. What do you suggest as alternative?
 
JackFyre said:
Summary:: A doubt regarding vectors, scalars and their role in physics

I have a doubt regarding the basic function of vectors and scalars in physics-

What is the guarantee that every quantity(measured) in physics can be classified as either a vector or a scalar, and that while performing operations on said quantities, they will obey the already established rules of vector/scalar operations?
Can you be more precise about your question?

It's generally implied in classical physics that if we have two particles of mass ##m_1## and ##m_2## and we put them together, then we have a system of mass ##m = m_1 + m_2##.

There's no guarantee that will be correct. It's more an axiom or postulate of classical mechanics that gets tested (along with all the other axioms, postulates or laws of motion) during an experiment.

And, in fact, in relativistic mechanics if ##m## above represents rest mass, then it's not true. For example, if ##m_e## is the mass of an electron and ##m_p## the mass of a proton, and ##m## is the mass of a hydrogen atom with one proton and one electron, then: ##m \ne m_p + m_e##.
 
PeroK said:
Can you be more precise about your question?

It's generally implied in classical physics that if we have two particles of mass ##m_1## and ##m_2## and we put them together, then we have a system of mass ##m = m_1 + m_2##.

There's no guarantee that will be correct. It's more an axiom or postulate of classical mechanics that gets tested (along with all the other axioms, postulates or laws of motion) during an experiment.

And, in fact, in relativistic mechanics if ##m## above represents rest mass, then it's not true. For example, if ##m_e## is the mass of an electron and ##m_p## the mass of a proton, and ##m## is the mass of a hydrogen atom with one proton and one electron, then: ##m \ne m_p + m_e##.
That pretty much answers it, thanks!
 
Scalars and vectors are just zero- and first order tensors, respectively. In physics and engineering we also need to employ higher order tensors, such as the stress tensor.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top