1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A External Direct Sum of Groups Problem

  1. Jun 10, 2008 #1
    The problem statement, all variables and given/known data
    Find a subgroup of [itex]Z_4 \oplus Z_2[/itex] that is not of the form [itex]H \oplus K[/itex] where H is a subgroup of [itex]Z_4[/itex] and K is a subgroup of [itex]Z_2[/itex].

    The attempt at a solution
    I'm guessing I need to find an [itex]H \oplus K[/itex] where either H or K is not a subgroup. But this seems impossible. Obviously (0, 0) will be in [itex]H \oplus K[/itex] so 0 is in H and 0 is in K. If (a, b) and (c, d) are elements of [itex]H \oplus K[/itex], (a, b) + (c, d) = (a + c, b + d) is in [itex]H \oplus K[/itex] so a, c, and a + b must be in H and b, d, and b + d must be in K. Since these are finite groups, H and K must be subgroups by closure. What's going on?
     
  2. jcsd
  3. Jun 10, 2008 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You want to find a subgroup that's NOT of the form H+K. Don't assume it's of the form H+K to begin with. Consider the subgroup generated by (2,1)? It has order two. What subgroups of the form H+K have order two. Is this one of them?
     
  4. Jun 11, 2008 #3
    I understand now. Thanks for the tip.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: A External Direct Sum of Groups Problem
  1. Direct Sum Problem (Replies: 4)

Loading...