• Support PF! Buy your school textbooks, materials and every day products Here!

A force acts on a particle based on position, determine work. Sign question.

  • Thread starter r0wbrt
  • Start date
  • #1
5
0
I have a question about this problem in relation to the way the solution manual handles it.

Homework Statement



A force Fx acts on a particle of mass 1.5kg. The force is related to the position x of the particle by the formula Fx = Cx3, where C = .50. IF x is in maters and Fx is in newtons. (a) What are the SI units of C? (b) Find the work done by this force as the particle moves from x = 3.0m to x = 1.5 m. (c) At x = 3.0m the force points in the opposite direction of the particles velocity (speed is 12m/s) What is its speed at x = 1.5m?

Ignore (a)

Homework Equations



[itex]W = \int F_{x} dx[/itex]
[itex] W = \frac{1}{2}{mv}^{2}_{f} - \frac{1}{2}{mv}^{2}_{i}[/itex]
Fx = Cx3


The Attempt at a Solution



Okay, when I solved the problem I used the first equation which gave me -9.5 Joules.

[itex]W = {\int}^{1.5m}_{3.0m} .5x^{3} dx = -9.5 Joules[/itex]


However, when I referenced the solution manual, they placed a negative sign in front of Fx in the equation because the force is "in the opposite direction of the displacement."

[itex]W = {\int}^{1.5m}_{3.0m} -.5x^{3} dx = 9.5 Joules[/itex]

This made no sense to me because the velocity of the particle is, from what I can tell, equal to -12m/s because the force function is always positive. So, it only makes sense to me that the force should be slowing the particle down since the particle is moving in the opposite direction of the force.

Consequently, because of the sign conversion, this throws off the answer to c as well because when I calculated the velocity with the negative work the velocity came out to 11.46m/s however, because the manual claims the work was positive, their result was 13m/s.

Derived Equation:
[itex]\sqrt{\frac{2W+m{v}^{2}_{i}}{m}} = v_f[/itex]

I can not make sense of why the solution manual flipped the sign of the force function.
 

Answers and Replies

  • #2
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,631
1,267
The solution manual is wrong. You're right.

What the solution manual is trying to explain is that the force ##\vec{F}## and the displacement ##d\vec{x}## point in the opposite direction, so
$$dW=\vec{F}\cdot d\vec{x} = |\vec{F}||d\vec{x}|\cos 180^\circ = -|\vec{F}||d\vec{x}|$$What the person who wrote the solution missed was the fact that ##|d\vec{x}| = -dx## because the lower limit of the integral is greater than the upper limit, so the work is given by
$$W = -\int |\vec{F}||d\vec{x}| = +\int_{3.0\text{ m}}^{1.5\text{ m}} Cx^3\,dx$$ as you had.
 
Last edited:

Related Threads on A force acts on a particle based on position, determine work. Sign question.

Replies
4
Views
2K
Replies
8
Views
11K
  • Last Post
Replies
12
Views
922
  • Last Post
Replies
1
Views
967
  • Last Post
Replies
1
Views
546
  • Last Post
Replies
3
Views
1K
Replies
6
Views
3K
Replies
6
Views
7K
  • Last Post
Replies
16
Views
5K
Replies
4
Views
2K
Top