MHB A fundamental fact about Linear Algebra

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Hello MHB,
This is probably my first challenge problem which falls in the 'University Math' category.

$V$ is a vector space over an infinite field $F$, prove that $V$ cannot be written as a set theoretic union of a finite number of proper subspaces.
 
Mathematics news on Phys.org
Nobody participated :(

Here's my solution:

Assume contradictory to the problem. Let $n$ be the minimum integer such that $V$ can be written as $V=V_1\cup\cdots\cup V_n$ where each $V_i$ is a proper subspace of $V$. Thus, \begin{equation*}\forall i,\exists x_i\in V \text{ such that } x_i\in V_j\iff j=i\tag{1}\end{equation*}Now consider $S=\{f_1x_1+\cdots+f_nx_n:f_i\in F\}$. Clearly this set is infinite, thus, by PHP, there is a $k$ such that $a,b\in V_k$ for distinct $a$ and $b$ in $S$. This contradicts $(1)$. Hence we achieve the required contradiction and the proof is complete.
 
caffeinemachine said:
Nobody participated :(

I would give everyone at least a week to participate, since not everyone checks in on a daily basis. Some may only have time once a week.
 
MarkFL said:
I would give everyone at least a week to participate, since not everyone checks in on a daily basis. Some may only have time once a week.
My bad then. Next time I'll wait for a week.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top