MHB A fundamental fact about Linear Algebra

AI Thread Summary
In the discussion, a proof is presented that a vector space \( V \) over an infinite field \( F \) cannot be expressed as a set-theoretic union of a finite number of proper subspaces. The proof assumes the contrary and uses the concept of linear combinations to show that the resulting set must be infinite, leading to a contradiction. The author emphasizes the importance of allowing sufficient time for responses, suggesting a week for participation. The conversation highlights the challenge of engaging others in mathematical discussions. Overall, the proof effectively demonstrates the fundamental property of vector spaces in linear algebra.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Hello MHB,
This is probably my first challenge problem which falls in the 'University Math' category.

$V$ is a vector space over an infinite field $F$, prove that $V$ cannot be written as a set theoretic union of a finite number of proper subspaces.
 
Mathematics news on Phys.org
Nobody participated :(

Here's my solution:

Assume contradictory to the problem. Let $n$ be the minimum integer such that $V$ can be written as $V=V_1\cup\cdots\cup V_n$ where each $V_i$ is a proper subspace of $V$. Thus, \begin{equation*}\forall i,\exists x_i\in V \text{ such that } x_i\in V_j\iff j=i\tag{1}\end{equation*}Now consider $S=\{f_1x_1+\cdots+f_nx_n:f_i\in F\}$. Clearly this set is infinite, thus, by PHP, there is a $k$ such that $a,b\in V_k$ for distinct $a$ and $b$ in $S$. This contradicts $(1)$. Hence we achieve the required contradiction and the proof is complete.
 
caffeinemachine said:
Nobody participated :(

I would give everyone at least a week to participate, since not everyone checks in on a daily basis. Some may only have time once a week.
 
MarkFL said:
I would give everyone at least a week to participate, since not everyone checks in on a daily basis. Some may only have time once a week.
My bad then. Next time I'll wait for a week.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top